早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知,角ADB为45度,点P在角ADB内,且OP为根号2,MN分别是OA,OB上的点求三角形MNP周长的最小值

题目详情
已知,角ADB为45度,点P在角ADB内,且OP为根号2,MN分别是OA,OB上的点求三角形MNP周长的最小值
▼优质解答
答案和解析
轴对称-最短路线问题.分析:确定动点为何位置时,△PEF周长的最小值,再根据等腰直角三角形的性质计算.作出点P关于直线OA的对称点M,关于直线OB的对称点N,
任意取OA上一点Q,OB上一点R,
由对称点的性质:QM=QP,RN=RP
所以三角形PQR的周长=PQ+QR+RP=MQ+QR+RN.
由两点间直线最短,
所以只有当Q,R在线段MN上时,上面的式子取最小值.
也就是说只要连接MN,它分别与OA,OB的交点E,F即为所求.
这时三角形PEF的周长=MN,只要求MN的长就行了.
容易知道OM=ON=OP= ,∠MOA=∠AOP,∠POB=∠BON.
所以∠MON=∠MOA+∠AOP+∠POB+∠BON=2(∠AOP+∠POB)=2∠AOB=90度.
所以三角形MON是等腰直角三角形,直角边等于 ,易求得斜边MN=2,
也就是说,三角形PEF的周长的最小值=MN=2.点评:此题考查了线路最短的问题,确定动点为何位置时,△PEF周长的最小是关键.
看了 已知,角ADB为45度,点P...的网友还看了以下: