早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设AB是抛物线x=y^2上长为2的动弦,求线段AB中点M的轨迹方程注意是x=y^2而不是y=x^2

题目详情
设AB是抛物线x=y^2上长为2的动弦,求线段AB中点M的轨迹方程 注意是x=y^2而不是y=x^2
▼优质解答
答案和解析
设A(x1,y1)B(x2,y2)中点M(x,y)
则x1=y1^2
x2=y2^2
x1+x2=2x
y1+y2=2y
→ y1^2+y2^2+2y1y2=4y^2
→ 2x+2y1y2=4y^2
→2y1y2=4y^2-2x
长为2,则
(x1-x2)^2+(y1-y2)^2=4
(y1+y2)^2(y1-y2)^2+(y1-y2)^2=4
(y1-y2)^2(4y^2+1)=4
【(y1+y2)^2-4y1y2】(4y^2+1)=4
(4y^2-8y^2+4x)(4y^2+1)=4
(x-y^2)(4y^2+1)=1
中点M的轨迹方程为
(x-y^2)(4y^2+1)=1