早教吧作业答案频道 -->英语-->
翻译句子...在线等Derivedfromtheleavesofthecocaplant,ithasmanynamesonthestreet,includingcoke,C,snow,flakeandblow.这里这些别名是什么?
题目详情
翻译句子...在线等
Derived from the leaves of the coca plant, it has many names on the street, including coke, C,snow,flake and blow.
这里这些别名是什么?
Derived from the leaves of the coca plant, it has many names on the street, including coke, C,snow,flake and blow.
这里这些别名是什么?
▼优质解答
答案和解析
从古柯叶植物,它有许多名字,在大街上,包括焦炭、丙、雪、片状和打击.
看了翻译句子...在线等Deriv...的网友还看了以下:
fy′(x0,y0)存在是f(x,y)在(x0,y0)可微的()A.必要条件B.充分条件C.充要条 2020-05-13 …
函数f(x)在(0,+∞)连续,f(1)=5/2,对所有x,t∈(0,+∞),满足∫(1,x)f( 2020-05-19 …
函数f(x,y)在点(x0,y0)处偏导数存在是f(x,y)在该点可微的()A.充分非必要条件B. 2020-06-08 …
已知函数y=f(x)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t) 2020-06-08 …
高数题目设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0 2020-06-12 …
已知二次函数f(x)=x^2-16x+q+3.1.若函数在区间[-1,1]上存在零点,求实数q的取 2020-06-12 …
证明:若T(≠0)是f(X)的周期,则-T也是f(X)的周期. 2020-06-14 …
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)= 2020-06-15 …
f(0)=0,则limf(2h)-f(h)/h(h趋向于0)存在是f(x)在x=0处可导的是充分不 2020-06-18 …
200分真心讨教高数定积分知识假定函数f(X)以T为周期即对于任意的实数x有f(x+t)=f(x) 2020-07-09 …