早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一个导数题(文科)定义在[-2,+无穷]上的函数f(x)的部分值:x=-2,f(x)=1;x=0,f(x)=-1;x=4,f(x)=1.它的导函数图象是过(0,0)点的单调递增的函数(图像上只取了[-2,4]这段),两正数a,b满足f(2a+b)

题目详情
一个导数题(文科)
定义在[-2,+ 无穷]上的函数f(x)的部分值:x=-2,f(x)=1;x=0,f(x)=-1;x=4,f(x)=1.它的导函数图象是过(0,0)点的单调递增的函数(图像上只取了[-2,4]这段),两正数a,b满
足f(2a+b)
▼优质解答
答案和解析
定义在[-2,+ 无穷)上的函数f(x)的部分值:
f(-2) = 1; f(0) = -1; f(4) = 1.
它的导函数图象是过(0,0)点的单调递增的函数(图像上只取了[-2,4]这段),
因此,
当 -2 < x < 0时,f(x)的导函数小于0.f(x)单调递减.
当 x > 0时,f(x)的导函数大于0.f(x)单调递增.
所以,
当 -2 < x < 0时,有,
1 = f(-2) > f(x) > f(0) = -1.
当 4 > x > 0时,有,
-1 = f(0) < f(x) < f(4) = 1.
当 x > 4时,有,
1 = f(4) < f(x).
因,f(2a+b) < 1,
所以,
-2 < 2a + b < 0,或者,4 > 2a + b > 0.
又a,b为正数.
因此,
0 < 2a + b < 4,
所以,0 < 2a < 4,
0 < a < 2,
3 < a + 3 < 5.
0 < b < 4,
3 < b + 3 < 7.
因此,
7/3 > (b+3)/(a+3) > 3/5
则(b+3)/(a+3)取值范围为(B)
A. (6/7,3/4) B.(3/5,7/3)
C.(2/3,6/5) D.(-1/3,3)