早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=(a-x^2)e^x,a∈R(1)求f(x)的单调区间(2)当a=0时,求证:f(x)+x^2+x^3≤0

题目详情
已知函数f(x)=(a-x^2)e^x,a∈R
(1)求f(x)的单调区间
(2)当a=0时,求证:f(x)+x^2+x^3≤0
▼优质解答
答案和解析
1)
f'(x)=(a-x²-2x)e^x
由f'(x)=0得a-x²-2x=0
(x+1)²=a+1
讨论a:
i)当aii)当a=-1时,f'(x)=-(x+1)²e^x≤0,f(x)在R上单调减;
iii)当a>-1时,f(x)有2个极值点±√(a+1), 当x>√(a+1)或x2)a=0时,f(x)=-x²e^x
f(x)+x²+x³=x²(-e^x+1+x)
令g(x)=-e^x+1+x
则由g'(x)=-e^x+1=0得x=0,此为极大值点,也为最大值点.
g(0)=-1+1+0=0
所以有g(x)≤0
因此x²g(x)≤0
故f(x)+x²+x³≤0