早教吧 育儿知识 作业答案 考试题库 百科 知识分享

初中数学函数大全要可详细可详细啊!

题目详情
初中数学函数大全
要可详细可详细啊!
▼优质解答
答案和解析
一次函数I、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数.
特别地,当b=0时,y是x的正比例函数.
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表(一般找4-6个点);(2)描点;(3)连线,可以作出一次函数的图象.(用平滑的直线连接)
2. 性质:在一次函数图象上的任意一点P(x,y),都满足等式:y=kx+b.
3. k,b与函数图象所在象限.
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小.
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限.
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图象.
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限.
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式.
(1)设一次函数的表达式(也叫解析式)为y=kx+b.
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②.
(3)解这个二元一次方程,得到k,b的值.
(4)最后得到一次函数的表达式.
V、在y=kx+b中,两个坐标系必定经过(0,b)和(-b/k,0)两点
VI、一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数.s=vt.
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数.设水池中原有水量S.g=S-ft.
反比例函数
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数.
自变量x的取值范围是不等于0的一切实数.
反比例函数的图像为双曲线.
如图,上面给出了k分别为正和负(2和-2)时的函数图像.
二次函数
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c (a≠0)
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根.
函数与x轴交点的横坐标即为方程的根.
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2
y=a(x-h)^2
y=a(x-h)^2+k
y=ax^2+bx+c
顶点坐标
(0,0)
(h,0)
(h,k)
(-b/2a,(4ac-b^2)/4a)
对 称 轴
x=0
x=h
x=h
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h>0,k
看了初中数学函数大全要可详细可详细...的网友还看了以下: