早教吧作业答案频道 -->数学-->
已知函数f(x)=x2+2x+a/x,x∈[1,+∞).1:当a=4时,求函数f(x)的最小值2:若对于任意在定义域上的x,都有f(x)>0恒成立,试求实数a的取值范围第一个问的答案1:当a=4时,f(x)=x+4/x+2易知,f(x)在[1,2]
题目详情
已知函数f(x)=x2+2x+a/x,x∈[1,+∞).
1:当a=4时,求函数f(x)的最小值
2:若对于任意在定义域上的x,都有f(x)>0恒成立,试求实数a的取值范围
第一个问的答案1:当a=4时,f(x)=x+4/x+2 易知,f(x)在[1,2]是减函数,在(2,+∞)为
增函数 是怎么来的?
1:当a=4时,求函数f(x)的最小值
2:若对于任意在定义域上的x,都有f(x)>0恒成立,试求实数a的取值范围
第一个问的答案1:当a=4时,f(x)=x+4/x+2 易知,f(x)在[1,2]是减函数,在(2,+∞)为
增函数 是怎么来的?
▼优质解答
答案和解析
(1).f(x)=(x^2+2x+a)/x=x+a/x +2
a=1/2 f(x)=x+1/2x+2 为对钩函数
当x=根号a时 f(x)min=2+根号2
(2).f(x)=(x^2+2x+a)/x=x+a/x +2
f(x)>0
x+a/x>-2
当a>=0时
f(x)是对钩函数 最小值是 x=√a 时
即 2√a >-2 因为√a >0 所以a∈[0,正无穷)时均成立
当a-2
所以a>-3 所以a∈(-3,0)
所以综上所述 a∈(-3,正无穷)
或者
因为f(x)=(x^2+2x+a)/x,x∈[1,正无穷)
f(x)>0
x^2+2x+a>0即可
(x+1)^+a-1>0
此时此函数满足x最小时成立即都可成立
x=1时 4+a-1>0
a>-3
a=1/2 f(x)=x+1/2x+2 为对钩函数
当x=根号a时 f(x)min=2+根号2
(2).f(x)=(x^2+2x+a)/x=x+a/x +2
f(x)>0
x+a/x>-2
当a>=0时
f(x)是对钩函数 最小值是 x=√a 时
即 2√a >-2 因为√a >0 所以a∈[0,正无穷)时均成立
当a-2
所以a>-3 所以a∈(-3,0)
所以综上所述 a∈(-3,正无穷)
或者
因为f(x)=(x^2+2x+a)/x,x∈[1,正无穷)
f(x)>0
x^2+2x+a>0即可
(x+1)^+a-1>0
此时此函数满足x最小时成立即都可成立
x=1时 4+a-1>0
a>-3
看了已知函数f(x)=x2+2x+...的网友还看了以下:
A=[-1,1]B=[﹙-√2﹚/2,﹙√2﹚/2]函数f(x)=2x²+mx-1一设不等式f(x 2020-04-27 …
特别是第三问已知定义在(0,正无穷大)上的函数f(x)对任意x,y属于(0,正无穷大),恒有f(x 2020-05-16 …
已知函数f(x)=ax2+bx+c,f(0)=0,对于任意实数x恒有f(1-x)=f(1+x)成立 2020-05-16 …
(基础)怎样将1/(x+1)化为1/x/(1+1/x)(即1/x是分子,括号里的是分母);还有将( 2020-07-08 …
已知定义在(0,正无穷)上的函数f(x)满足:1、对任意的x、y属于(0,正无穷),都有f(xy) 2020-07-14 …
设函数y=f(x)是定义在R上的函数,对任意实数x,有f(1-x)=x^2-3x+3.⑴求函数y= 2020-07-18 …
要的是速度:1.证明,对任何实数.有xe^(1-x)≤12.求方程e^(x+y)=xy所确定的隐函 2020-07-21 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …
已知非常数函数f(x)在上可导,当x∈(-∞,1]时,有(1-x)f'(x)≤0,且对任意x∈R都有 2020-12-07 …
证明下列方程在指定区间中必有根:1)x^3-x+1=0区间(1,2)2)x*3^x=1区间(0,1) 2020-12-31 …