早教吧作业答案频道 -->英语-->
英语.hershoesarebrown为什么不是shoe呢?难道这句话是说她的鞋子全都是棕色的吗?
题目详情
英语.
her shoes are brown为什么不是shoe呢?难道这句话是说她的鞋子全都是棕色的吗?
her shoes are brown为什么不是shoe呢?难道这句话是说她的鞋子全都是棕色的吗?
▼优质解答
答案和解析
鞋有两只,复数
看了 英语.hershoesare...的网友还看了以下:
()()r()()s()e()()()a()()e()r()()s()e()e()a()()e()r 2020-03-31 …
A是n阶矩阵,r(A+E)+r(A-E)=n,证明A^2=E稍微具体一点行不。 2020-04-05 …
英语达.请把下列个题中的字母组成一个你所学过的单词.o,m,w,l,c,e,ee,g,h,t,io 2020-05-13 …
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
设A为n阶矩阵有A的2次方等于E.求证r(A+E)+r(A-E)=n. 2020-05-14 …
设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n, 2020-05-15 …
设A为n*n矩阵,证明:如果A^2=E,那么R(A+E)+R(A-E)=n 2020-05-15 …
线性代数求解有n阶矩阵A,满足(A+E)(A-E)=0,怎么得出R(A+E)+R(A-E)≤n不懂 2020-06-28 …
在球坐标系中,已知矢量A=e(r)a+e(θ)b+e(φ)c,其中a、b和c均为常数.(1)问矢量 2020-07-21 …
设A是2阶方阵,且A^2=E,A不等于±E,证明:r(A+E)=r(A-E)=1 2020-11-02 …