早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•长春一模)已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2n•(an+2),求数列{bn}的前n项和Sn.

题目详情
(2014•长春一模)已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn
▼优质解答
答案和解析
(Ⅰ)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得
(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,
当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.
∴d=2,
∴an=a1+(n-1)d=2+2(n-1)=2n.
即数列{an}的通项公式an=2n;
(Ⅱ)由an=2n,得
bn=
2
n•(an+2)
=
2
n(2n+2)
1
n(n+1)
1
n
1
n+1

∴Sn=b1+b2+b3+…+bn
=1−
1
2
+
1
2
1
3
+
1
3
1
4
+…+
1
n
1
n+1
=
n
n+1