早教吧 育儿知识 作业答案 考试题库 百科 知识分享

△ABC中,AB=AC,∠BAC=90°,过B、C两点作经过A的直线的垂线,垂足分别为D、E,如图(1).(1)判断线段BD、DE、EC是什么关系?予以证明;(2)如图(2),设O为BC的中点,连接DO、EO,判断DO

题目详情
△ABC中,AB=AC,∠BAC=90°,过B、C两点作经过A的直线的垂线,垂足分别为D、E,如图(1).

(1)判断线段BD、DE、EC是什么关系?予以证明;
(2)如图(2),设O为BC的中点,连接DO、EO,判断DO、EO有什么关系?请说明理由.
▼优质解答
答案和解析
(1)DE=EC-BD.
理由:∵∠ABD+∠BAD=90°,∠BAD+∠EAC=90°
∴∠ABD=∠EAC,
又∵AB=AC,∠BDA=∠AEC=90°,
∴△ABD≌△CAE,BD=AE,AD=CE,
∴DE=AD-AE=EC-BD;
(2)DO=EO.
理由:如图2,过O点作OG⊥AD,垂足为G点,
又∵BD⊥AD,CE⊥AD,
∴BD∥OG∥CE,
又∵O为BC的中点,
∴G点为BF的中点,
∴G点为DE的中点,即OG为线段DE的垂直平分线,
∴DO=EO.