早教吧 育儿知识 作业答案 考试题库 百科 知识分享

甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是,甲、丙两人同时不能被聘用的概率是,乙、丙两人同时能被聘用的概率为,且三人各自能否被聘用相互独立.(1)求乙、

题目详情
甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是 ,甲、丙两人同时不能被聘用的概率是 ,乙、丙两人同时能被聘用的概率为 ,且三人各自能否被聘用相互独立.
(1)求乙、丙两人各自被聘用的概率;
(2)设 为甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求 的分布列与均值(数学期望).
▼优质解答
答案和解析
(1)乙、丙两人各自被聘用的概率分别为 ;(2)详见解析.


试题分析:(1)分别设乙、丙两人各自被聘用的概率为 ,利用事件的独立性列出相应的方程进行求解,从而得出乙、丙两人各自被聘用的概率;(2)先列举出随机变量 的可能取值,并根据事件的独立性求出 在相应条件的概率,列出分布列并求出随机变量 的均值(即数学期望).
试题解析:(1)设乙、丙两人各自被聘用的概率分别为
则甲、丙两人同时不能被聘用的概率是 ,解得
乙、丙两人同时能被聘用的概率为
因此乙、丙两人各自被聘用的概率分别为
(2) 的可能取值有



因此随机变量 的分布列如下表所示






所以随机变量 的均值(即数学期望) .
看了甲、乙、丙三人参加某次招聘会,...的网友还看了以下: