早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是

题目详情
(1)将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.
例如,求x2+4x+5的最小值.
解:原式=x2+4x+4+1=(x+2)2+1
∵(x+2)2≥0
∴(x+2)2+1≥1
∴当x=-2时,原式取得最小值是1
请求出x2+6x-4的最小值.
(2)非负性的含义是指大于或等于零.在现初中阶段,我们主要学习了绝对值的非负性与平方的非负性,几个非负算式的和等于0,只能是这几个式子的值均为0.
请根据非负算式的性质解答下题:
已知△ABC的三边a,b,c满足a2-6a+b2-8b+25+|c-5|=0,求△ABC的周长.
(3)已知△ABC的三边a,b,c满足a2+b2+c2=ab+bc+ac.试判断△ABC的形状.
▼优质解答
答案和解析
(1)x2+6x-4
=x2+6x+9-9-4
=(x+3)2-13,
∵(x+3)2≥0
∴(x+3)2-13≥-13
∴当x=-3时,原式取得最小值是-13.
(2)∵a2-6a+b2-8b+25+|c-5|=0,
∴(a-3)2+(b-4)2+|c-5|=0,
∴a-3=0,b-4=0,c-5=0,
∴a=3,b=4.c=5,
∴△ABC的周长=3+4+5=12.
(3)△ABC为等边三角形.理由如下:
∵a2+b2+c2=ab+bc+ac,
∴a2+b2+c2-ac-ab-bc=0,
∴2a2+2b2+2c2-2ac-2ab-2bc=0,
即a2+b2-2ab+b2+c2-2bc+a2+c2-2ac=0,
∴(a-b)2+(b-c)2+(c-a)2=0,
∴a-b=0,b-c=0,c-a=0,
∴a=b=c,
∴△ABC为等边三角形.