早教吧作业答案频道 -->其他-->
我市某高中的一个综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如
题目详情
我市某高中的一个综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程
=bx+a.
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考数据:
xi2=112+132+122+82=498;
xiyi11×25+13×29+12×26+8×16=1092.
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程
y |
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考数据:
4 |
i=1 |
4 |
i=1 |
▼优质解答
答案和解析
(1).x=14(11+13+12+8)=11,.y=14(25+29+26+16)=24,4i=1xiyi=11×25+13×29+12×26+8×16=1092,4i=1xi2=112+132+122+82=498,b=ni=1xiyi−n.x.yni=1x2i−n.x2=1092−4×11×24498−4×112=187,a=...
看了我市某高中的一个综合实践研究小...的网友还看了以下:
0,1/2,0,1/4,0,1/6...的通项公式是什么 2020-03-30 …
设随机变量X,Y相互独立,且服从[0,1]上的均匀分布,求X+Y的概率密度.设随机变量X,Y相互独 2020-04-05 …
随机过程题目:设X是一连续随机变量,具有分布F,证明:(a)F(x)服从(0,1)上的均匀分布随机 2020-04-13 …
已知函数f(x)=x|x减2m|,常数m属于R(1)设m=0,求证:函数f(x)递增(2)设m>0 2020-05-13 …
已知函数f(x)=x|x减2m|,常数m属于R(1)设m=0,求证:函数f(x)递增(2)设m>0 2020-05-13 …
函数f(x)在[-1,0)U(0,1]上是偶函数设函数f(x)是定义在[-1,0)U(0,1]上的 2020-05-16 …
过点(1,0,0)(0,1,0)(0,0,1)的平面方程为? 2020-05-16 …
设f(x)=2x平方/x+1,g(x)=ax+5-2a(a>0)1.求f(x)在[0,1]上的值域 2020-05-20 …
[0,1]内的所有数字的平均数是多少?我是这样想的,假设[0,1]内有n个数,那么根据连续求和的那 2020-05-22 …
f(x)=a的x平方(a>0,a≠1)在区间[0,1]上的最大值与最小值的和为3,则实数a的值.f 2020-05-23 …