早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在x轴的正方向上,从左向右依次取点列{Aj},j=1,2,…,以及在第一象限内的抛物线y2=32x上从左向右依次取点列{Bk},k=1,2,…,使△Ak-1BkAk(k=1,2,…)都是等边三角形,其中A0是坐标原

题目详情
在x轴的正方向上,从左向右依次取点列 {Aj},j=1,2,…,以及在第一象限内的抛物线y2=
3
2
x上从左向右依次取点列{Bk},k=1,2,…,使△Ak-1BkAk(k=1,2,…)都是等边三角形,其中A0是坐标原点,则第2011个等边三角形的边长是______.
▼优质解答
答案和解析
(1)设第n个等边三角形的边长为an.则第n个等边三角形的在抛物线上的顶点Bn的坐标为(a1+a2+…+an−1+an2,32(a1+a2+…+an−1+an2)).再从第n个等边三角形中,可得Bn的纵坐标为a2n−(12an)2=32an.从而有32an=32...