早教吧作业答案频道 -->数学-->
分类讨论已知函数f(x)=1-1/x(x>=1)1/x-1(00,∴0∈[a,b],矛盾我的理解:①-②可得,mab=1,∵a、b∈(0,1),∴m=1/(ab)>1③-④可得,mab=1,∵a、b∈[1,+∞),∴m=1/(ab),∴m∈(0,1)我的意思是为什么不能这样啊,
题目详情
分类讨论
已知函数f(x)=1-1/x (x>=1)
1/x-1 (00,
∴0∈[a,b],矛盾
我的理解:①-②可得,mab=1,∵a、b∈(0,1),∴m=1/(ab)>1
③-④可得,mab=1,∵a、b∈[1,+∞),∴m=1/(ab),∴m∈(0,1)
我的意思是为什么不能这样啊,为什么会出现这种情况?
①-②得:(b-a)/ab=m(b-a),mab=1。这个要加上什么约束条件啊?加上之后怎么推出错误啊?
已知函数f(x)=1-1/x (x>=1)
1/x-1 (00,
∴0∈[a,b],矛盾
我的理解:①-②可得,mab=1,∵a、b∈(0,1),∴m=1/(ab)>1
③-④可得,mab=1,∵a、b∈[1,+∞),∴m=1/(ab),∴m∈(0,1)
我的意思是为什么不能这样啊,为什么会出现这种情况?
①-②得:(b-a)/ab=m(b-a),mab=1。这个要加上什么约束条件啊?加上之后怎么推出错误啊?
▼优质解答
答案和解析
①-②得:(b-a)/ab=m(b-a),此时只有a≠b时才有mab=1.若mab=1,①式1/a-1=mb=1/a,②式同理,显然不会成立.标准解中:当a≠0,b≠0时,①式得1-a=mab,②式得1-b=mab,所以有a=b.③-④得mab=1没问题.但无法从ab>1推出 m∈(...
看了分类讨论已知函数f(x)=1-...的网友还看了以下: