早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知定义在R的函数f(x)满足以下条件:①对任意实数x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);②当x>0时,f(x)>0;③f(1)=1.(1)求f(2),f(0)的值;(2)若f(2x)-a≥af(x

题目详情
已知定义在R的函数f(x)满足以下条件:
①对任意实数x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);
②当x>0时,f(x)>0;
③f(1)=1.
(1)求f(2),f(0)的值;
(2)若f(2x)-a≥af(x)-5对任意x恒成立,求a的取值范围;
(3)求不等式f(f(x))≥
7-f(x+1)
1+f(x+1)
的解集.
▼优质解答
答案和解析
(1)令x=y=1可得f(2)=f(1)f(1)+2f(1)=3,
令x=y=0可得f(0)=f(0)f(0)+2f(0),则f(0)=0或f(0)=-1,
令x=1,y=0可得f(1)=f(1)f(0)+f(0)+f(1),若f(0)=-1,则f(1)=f(0)=-1与已知矛盾,∴f(0)=0;
(2)f(2x)-a≥af(x)-5对任意x恒成立⇒f2(x)+2f(x)-a≥af(x)-5对任意x恒成立,
令f(x)=t,以下探讨f(x)=t的取值范围.
令y=-x可得f(0)=f(-x)f(x)+f(x)+f(-x)⇒f(x)=
-f(-x)
f(-x)+1
=-1+
1
f(-x)+1

当x<0时,f-x)>0,则-1<f(x)=
-f(-x)
f(-x)+1
=-1+
1
f(-x)+1
<0,
∴x∈R时,f(x)=t∈(-1,+∞).
原不等式等价于:t2+2t-a≥at-5在t∈(-1,+∞)恒成立,
即tt2+2t+5≥(t+1)a⇒a≤
t2+2t+5
t+1

g(t)=
t2+2t+5
t+1
=t+1+
4
t+1
≥4,当t=1时取等号.
∴a≤4.
(3)由(2)可得f(x)∈(-1+∞),f(x+1)∈(-1+∞),
f(f(x))≥
7-f(x+1)
1+f(x+1)
⇒[1+f(x+1)]•f(f(x))≥7-f(x+1)⇒
f(x+1)•⇒[1+f(x+1)]•f(f(x))≥7-f(x+1)⇒
f(x+1)+f(x+1)•f(f(x))+f(f(x))≥7⇒f(x+1+f(x))≥7.
下面证明y=f(x)的单调性:
任取x1,x2∈R,且x1>x2,⇒f(x1-x2)>0,f(x2)>-1
则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)f(x2)+f(x1-x2)=f(x1-x2)[f(x2)+1]>0
所以函数 y=f(x)在R上单调递增,
∵f(3)═f(1)f(2)+f(2)+f(1)=7,
∴f(x+1+f(x))≥7⇒.f(x+1+f(x))≥f(3)⇒x+1+f(x)≥3
令F(x)=x+1+f(x),F(x)在R上单调递增,且F(1)=3
x+1+f(x)≥3⇔F(x)≥F(3)⇒x≥1,
所以原不等式解集为:[1,+∞).