早教吧作业答案频道 -->数学-->
已知定义在R的函数f(x)满足以下条件:①对任意实数x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);②当x>0时,f(x)>0;③f(1)=1.(1)求f(2),f(0)的值;(2)若f(2x)-a≥af(x
题目详情
已知定义在R的函数f(x)满足以下条件:
①对任意实数x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);
②当x>0时,f(x)>0;
③f(1)=1.
(1)求f(2),f(0)的值;
(2)若f(2x)-a≥af(x)-5对任意x恒成立,求a的取值范围;
(3)求不等式f(f(x))≥
的解集.
①对任意实数x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);
②当x>0时,f(x)>0;
③f(1)=1.
(1)求f(2),f(0)的值;
(2)若f(2x)-a≥af(x)-5对任意x恒成立,求a的取值范围;
(3)求不等式f(f(x))≥
7-f(x+1) |
1+f(x+1) |
▼优质解答
答案和解析
(1)令x=y=1可得f(2)=f(1)f(1)+2f(1)=3,
令x=y=0可得f(0)=f(0)f(0)+2f(0),则f(0)=0或f(0)=-1,
令x=1,y=0可得f(1)=f(1)f(0)+f(0)+f(1),若f(0)=-1,则f(1)=f(0)=-1与已知矛盾,∴f(0)=0;
(2)f(2x)-a≥af(x)-5对任意x恒成立⇒f2(x)+2f(x)-a≥af(x)-5对任意x恒成立,
令f(x)=t,以下探讨f(x)=t的取值范围.
令y=-x可得f(0)=f(-x)f(x)+f(x)+f(-x)⇒f(x)=
=-1+
,
当x<0时,f-x)>0,则-1<f(x)=
=-1+
<0,
∴x∈R时,f(x)=t∈(-1,+∞).
原不等式等价于:t2+2t-a≥at-5在t∈(-1,+∞)恒成立,
即tt2+2t+5≥(t+1)a⇒a≤
.
g(t)=
=t+1+
≥4,当t=1时取等号.
∴a≤4.
(3)由(2)可得f(x)∈(-1+∞),f(x+1)∈(-1+∞),
f(f(x))≥
⇒[1+f(x+1)]•f(f(x))≥7-f(x+1)⇒
f(x+1)•⇒[1+f(x+1)]•f(f(x))≥7-f(x+1)⇒
f(x+1)+f(x+1)•f(f(x))+f(f(x))≥7⇒f(x+1+f(x))≥7.
下面证明y=f(x)的单调性:
任取x1,x2∈R,且x1>x2,⇒f(x1-x2)>0,f(x2)>-1
则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)f(x2)+f(x1-x2)=f(x1-x2)[f(x2)+1]>0
所以函数 y=f(x)在R上单调递增,
∵f(3)═f(1)f(2)+f(2)+f(1)=7,
∴f(x+1+f(x))≥7⇒.f(x+1+f(x))≥f(3)⇒x+1+f(x)≥3
令F(x)=x+1+f(x),F(x)在R上单调递增,且F(1)=3
x+1+f(x)≥3⇔F(x)≥F(3)⇒x≥1,
所以原不等式解集为:[1,+∞).
令x=y=0可得f(0)=f(0)f(0)+2f(0),则f(0)=0或f(0)=-1,
令x=1,y=0可得f(1)=f(1)f(0)+f(0)+f(1),若f(0)=-1,则f(1)=f(0)=-1与已知矛盾,∴f(0)=0;
(2)f(2x)-a≥af(x)-5对任意x恒成立⇒f2(x)+2f(x)-a≥af(x)-5对任意x恒成立,
令f(x)=t,以下探讨f(x)=t的取值范围.
令y=-x可得f(0)=f(-x)f(x)+f(x)+f(-x)⇒f(x)=
-f(-x) |
f(-x)+1 |
1 |
f(-x)+1 |
当x<0时,f-x)>0,则-1<f(x)=
-f(-x) |
f(-x)+1 |
1 |
f(-x)+1 |
∴x∈R时,f(x)=t∈(-1,+∞).
原不等式等价于:t2+2t-a≥at-5在t∈(-1,+∞)恒成立,
即tt2+2t+5≥(t+1)a⇒a≤
t2+2t+5 |
t+1 |
g(t)=
t2+2t+5 |
t+1 |
4 |
t+1 |
∴a≤4.
(3)由(2)可得f(x)∈(-1+∞),f(x+1)∈(-1+∞),
f(f(x))≥
7-f(x+1) |
1+f(x+1) |
f(x+1)•⇒[1+f(x+1)]•f(f(x))≥7-f(x+1)⇒
f(x+1)+f(x+1)•f(f(x))+f(f(x))≥7⇒f(x+1+f(x))≥7.
下面证明y=f(x)的单调性:
任取x1,x2∈R,且x1>x2,⇒f(x1-x2)>0,f(x2)>-1
则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)f(x2)+f(x1-x2)=f(x1-x2)[f(x2)+1]>0
所以函数 y=f(x)在R上单调递增,
∵f(3)═f(1)f(2)+f(2)+f(1)=7,
∴f(x+1+f(x))≥7⇒.f(x+1+f(x))≥f(3)⇒x+1+f(x)≥3
令F(x)=x+1+f(x),F(x)在R上单调递增,且F(1)=3
x+1+f(x)≥3⇔F(x)≥F(3)⇒x≥1,
所以原不等式解集为:[1,+∞).
看了已知定义在R的函数f(x)满足...的网友还看了以下:
某地上年度电价0.8元/千瓦时,年用量为1亿千瓦时,本年度计划将电价调至0.55至0.75元之间经 2020-05-13 …
请问一道偏微分的题设f(x,y)=xy(x^2-y^2)/(x^2+y^2)当x^2+y^20时. 2020-06-07 …
已知函数f(x)=a^x,g(x)=(a^2x)+m,其中m>0,a>0且a≠0.当x€[-1,1 2020-06-11 …
求当x趋于无穷大时,∫(0,x)2arctantdt/√(1+x^2)的极限 2020-07-22 …
函数连续设f(x)={X^a*cos(1/x),x不等于0时{0,x=0时其导数在x=0处连续,则 2020-07-26 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
当x→0时0/x的极限等于0.请给出严密的计算过程 2020-07-31 …
x趋于零时,0/x等于0?x趋于0时这个式子应该是0/0型,不能确定最后的值啊 2020-10-30 …
已知定义域为[0.1]的函数f(x)同时满足1.当x属于[0.1]时,f(x)>=02.f(1)=1 2020-12-08 …
设函数f(x)=e^x-1-x-ax^2若当x>=0时,f(x)>=0,求a的取值范围我做的过程是令 2020-12-27 …