早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•海南)如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛

题目详情
(2014•海南)如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.
(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.
▼优质解答
答案和解析
(1)∵对称轴为直线x=2,
∴设抛物线解析式为y=a(x-2)2+k.
将A(-1,0),C(0,5)代入得:
9a+k=0
4a+k=5
,解得
a=−1
k=9

∴y=-(x-2)2+9=-x2+4x+5.

(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.
设P(x,-x2+4x+5),
如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=-x2+4x+5,
∴MN=ON-OM=-x2+4x+4.

S四边形MEFP=S梯形OFPN-S△PMN-S△OME
=
1
2
(PN+OF)•ON-
1
2
PN•MN-
1
2
OM•OE
=
1
2
(x+2)(-x2+4x+5)-
1
2
x•(-x2+4x+4)-
1
2
×1×1
=-x2+
9
2
x+
9
2

=-(x-
9
4
2+
153
16

∴当x=
9
4
时,四边形MEFP的面积有最大值为
153
16
,此时点P坐标为(
9
4
作业帮用户 2017-10-18 举报
问题解析
(1)利用待定系数法求出抛物线的解析式;
(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;
(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,-1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.
名师点评
本题考点:
二次函数综合题.
考点点评:
本题是二次函数综合题,第(1)问考查了待定系数法;第(2)问考查了图形面积计算以及二次函数的最值;第(3)问主要考查了轴对称-最短路线的性质.试题计算量偏大,注意认真计算.
我是二维码 扫描下载二维码