早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,已知,,.是射线上的动点(点与点不重合),是线段的中点.(1)设,的面积为,求关于的函数解析式,并写出函数的定义域;(2)如果以线段为直径

题目详情
如图1,已知 是射线 上的动点(点 与点 不重合), 是线段 的中点.

(1)设 的面积为 ,求 关于 的函数解析式,并写出函数的定义域;
(2)如果以线段 为直径的圆与以线段 为直径的圆外切,求线段 的长;
(3)连接 ,交线段 于点 ,如果以 为顶点的三角形与 相似,求线段 的长.
▼优质解答
答案和解析
(1)过点M作MF⊥AB 垂足为F则MF是梯形的中位线

∴MF=   …………………………1分


 且    ………………3分
(2)连结点M、F,过点D作DH⊥BC,垂足为H

  …………5分
解得    ……………………………………6分
(3)设线段BE=x
易证∠DAM=∠EBM
①当∠ADB=∠MEB时
∵AD∥BE ∴∠AND=∠DBE
∴∠DBE=∠DEB 易得BE=2AD=8  ……………8分
②当∠ADB=∠BME时
∠ADB=∠BMC=∠DBC
又∵∠BMC=∠DMB+∠BDM
∴∠BDM=∠MBC ∴△BDE∽△MBE………………10分
 


解得    ………………12分

(1)△ABM中,已知了AB的长,要求面积就必须求出M到AB的距离,如果连接AB的中点和M,那么这条线就是直角梯形的中位线也是三角形ABM的高,那么AB边上的高就是(AD+BE)的一半,然后根据三角形的面积公式即可得出y,x的函数关系式;
(2)根据以AB,DE为直径的圆外切,那么可得出的是AD+BC=AB+DE,那么可根据BE,AD的差和AB的长,用勾股定理来表示出DE,然后根据上面分析的等量关系得出关于x的方程,即可求出x的值,即BE的长;
(3)如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因为AD∥BC,如果两角相等,那么M与D重合,显然不合题意.因此本题分两种情况进行讨论:
①当∠ADN=∠BME时,∠DBE=∠BME,因此三角形BDE和MBE相似,可得出关于DE,BE,EM的比例关系式,即可求出x的值.
②当∠AND=∠BEM时,∠ADB=∠BEM,可根据这两个角的正切值求出x的值.
看了 如图1,已知,,.是射线上的...的网友还看了以下: