早教吧 育儿知识 作业答案 考试题库 百科 知识分享

直角三角形ABC中,∠C=90度,CB=6,AC=8,D为CB边上一个动点,E为AC上一点,DE∥AB,将三角形CDE沿着DE翻折得到三角形DEF,设三角形DEF和三角形ABC重合的面积为y,DC=x,求y与x的函数关系式及定义

题目详情
直角三角形ABC中,∠C=90度,CB=6,AC=8,D为CB边上一个动点,E为AC上一点,DE∥AB,将三角形CDE沿着DE翻折得到三角形DEF,设三角形DEF和三角形ABC重合的面积为y,DC=x,求y与x的函数关系式及定义域.
作业帮
▼优质解答
答案和解析
当0≤x≤3时,点F在△ABC内(包括在边AB上),如图1所示,作业帮
此时△DEF和△ABC重合部分是完整的△DEF.
由翻折的性质可知:△DEF≌△DEC.
∵DE∥AB,
CD
CB
=
CE
CA

∴CE=
CD•CA
CB
=
4
3
CD=
4
3
x,
∴y=
1
2
CD•CE=
2
3
x2
当3<x≤6时,点F在△ABC外,如图2所示.作业帮
∵DE∥AB,
∴∠CDE=∠B,∠FGH=∠FDE.
由翻折的性质可知:∠CDE=∠FDE,
∴∠B=∠FGH=∠BGD,
∴BD=GD,
∴GF=2x-6,FH=
4
3
(2x-6),
∴y=S△CDE-S△FGH=
1
2
CD•CE-
1
2
GF•FH=-2x2+16x-24.
综上所述:y=
2
3
x2(0≤x≤3)
-2x2+16x-24(3<x≤6)
看了 直角三角形ABC中,∠C=9...的网友还看了以下: