早教吧作业答案频道 -->数学-->
x^2/(x^2+y^2+xy)+y^2/(y^2+z^2+yz)+z^2/(z^2+x^2+xz)>1x,y,z为正数.如何证明?一楼的你把123代入就知道了还有,能不能用高中的方法..就是不用那么复杂的什么什么定理的..
题目详情
x^2/(x^2+y^2+xy)+y^2/(y^2+z^2+yz)+z^2/(z^2+x^2+xz)>1
x,y,z为正数.如何证明?
一楼的你把1 2 3 代入就知道了
还有,能不能用高中的方法..就是不用那么复杂的什么什么定理的..
x,y,z为正数.如何证明?
一楼的你把1 2 3 代入就知道了
还有,能不能用高中的方法..就是不用那么复杂的什么什么定理的..
▼优质解答
答案和解析
纠错:本题应该是x^2/(x^2+y^2+xy)+y^2/(y^2+z^2+yz)+z^2/(z^2+x^2+xz)>=1
证明如下:
原不等式等价于:
1/[1+y/x+(y/x)^2]+1/[1+z/y+(z/y)^2]+1/[1+x/z+(x/z)^2]>=1
设y/x=a,z/y=b,x/z=c
则原不等式化为已知条件abc=1
证明:1/(1+a+a^2)+1/(1+b+b^2)+1/(1+c+c^2)>=1
考虑证明:1/(a+a+a^2)+1/(1+b+b^2)>=(1+ab)/(1+ab+a^2b^2)
上式等价于(1-ab^2)^2+(1-a^2b)^2+a^2b^2(a-b)^2>=0{去分母配方可得}
上式显然成立.
于是1/(a+a+a^2)+1/(1+b+b^2)>=(1+ab)/(1+ab+a^2b^2)是成立的.
利用该式我们有:
1/(1+a+a^2)+1/(1+b+b^2)+1/(1+c+c^2)>=(1+ab)/(1+ab+a^2b^2)+1/(1+c+c^2)
利用条件abc=1有(1+ab)/(1+ab+a^2b^2)=(c^2+c)/(1+c+c^2)
于是(1+ab)/(1+ab+a^2b^2)+1/(1+c+c^2)=(c^2+c)/(1+c+c^2)+1/(1+c+c^2)=1
也即1/(1+a+a^2)+1/(1+b+b^2)+1/(1+c+c^2)>=1成立.
原不等式得证.
证明如下:
原不等式等价于:
1/[1+y/x+(y/x)^2]+1/[1+z/y+(z/y)^2]+1/[1+x/z+(x/z)^2]>=1
设y/x=a,z/y=b,x/z=c
则原不等式化为已知条件abc=1
证明:1/(1+a+a^2)+1/(1+b+b^2)+1/(1+c+c^2)>=1
考虑证明:1/(a+a+a^2)+1/(1+b+b^2)>=(1+ab)/(1+ab+a^2b^2)
上式等价于(1-ab^2)^2+(1-a^2b)^2+a^2b^2(a-b)^2>=0{去分母配方可得}
上式显然成立.
于是1/(a+a+a^2)+1/(1+b+b^2)>=(1+ab)/(1+ab+a^2b^2)是成立的.
利用该式我们有:
1/(1+a+a^2)+1/(1+b+b^2)+1/(1+c+c^2)>=(1+ab)/(1+ab+a^2b^2)+1/(1+c+c^2)
利用条件abc=1有(1+ab)/(1+ab+a^2b^2)=(c^2+c)/(1+c+c^2)
于是(1+ab)/(1+ab+a^2b^2)+1/(1+c+c^2)=(c^2+c)/(1+c+c^2)+1/(1+c+c^2)=1
也即1/(1+a+a^2)+1/(1+b+b^2)+1/(1+c+c^2)>=1成立.
原不等式得证.
看了 x^2/(x^2+y^2+x...的网友还看了以下:
已知x,y为正数,且x^2+y^2/2=1,则x·根号下(1+y^2)的最大值是解法为则S^2=x 2020-07-13 …
matlab求方程组的解用[x,y]=solve('(x-1)^2+(y-2)^2-25=0',' 2020-07-18 …
请帮我想想如何用较简便的方法解这题:过直线x+y+1=0和圆x^2+y^2-2x-2y-7=0的交 2020-07-26 …
若x-y=2,x^2+y^2=3,则m的值为(1)x-y=2,x^2+y^2=3,则xy的值为(2 2020-07-30 …
求下这个坐标啊.我没救了,你拿什么拯救我?圆(x+1)^2+(y-2)^2=4与2X-Y相切的点的 2020-08-02 …
1..设x/a+y/b+z/c=1,a/x+b/y+c/z=0,求x*2/a*2+y*2/b*2+z 2020-10-30 …
{x^2+y^2=12x+y=5{x^2-y^2+x-y-6=0x^2-y^2-x+y-4=0{x^ 2020-10-31 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …
初一数学!快啊!答得好30分!决不食言!998^2=123^2-124*122=已知x+y=6且xy 2020-11-23 …