早教吧 育儿知识 作业答案 考试题库 百科 知识分享

直线l:y=kx+1与双曲线C:2x^2-y^2=1的右支交于不同的两点A,B.是否存在实数k,使得线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.k最后算出来是-(6+√6)/5……我实在

题目详情
直线l:y=kx+1与双曲线C:2x^2-y^2=1的右支交于不同的两点A,B.是否存在实数k,使得线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.
k最后算出来是-(6+√6)/5……我实在是算不出来了,要简略清楚的过程,好的一定有追加!
▼优质解答
答案和解析
(1)
直线l与双曲线C的右支交于不同的两点A,B
这说明方程组:
y=kx+1
2x^2-y^2=1
中x有2个不相等的正数根.
即:2x^2 - (kx+1)^2 = 1 有2个不等的正数根,整理一下:
(2-k^2)x^2 - 2kx - 2 = 0
因此:
x1 + x2 = 2k/(2-k^2) > 0 ……(1)
且 x1 * x2 = -2/(2-k^2) > 0 ……(2)
且 △ = (-2k)^2 + 8(2-k^2) = 16-4k^2 > 0 ……(3)
由(2),得:k^2 > 2
由(3),得:k^2 < 4
由(1)÷(2)得:k