早教吧 育儿知识 作业答案 考试题库 百科 知识分享

1/1×3×5+1/3×5×7+1/5×7×9+···+1/2001×2003×2005等于多少?(列方程解)

题目详情
1/1×3×5+1/3×5×7+1/5×7×9+···+1/2001×2003×2005等于多少?(列方程解)
▼优质解答
答案和解析
1/[(2k-1)(2k+1)(2k+3)]={1/[(2k-1)(2k+1)] - 1/[(2k+1)(2k+3)]}/4,
将k=1,2,3,·······,2001代入,
原式=[1/(1×3)-1/(3×5)+1/(3×5)-1/(5×7)+·····+1/(2001×2003)-1/(2003×2005)]/4
=1/12-1/(4×2003×2005).
公式:(∑是求和的记号)∑1/(2n-1)(2n+1)(2n+3)=1/4 - 1/[4(2n+1)(2n+3)] .