早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,E是正方形ABCD的边BC上的一个动点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE,过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)探索点F是否

题目详情
如图,E是正方形ABCD的边BC上的一个动点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE,过点F作FG⊥BC交BC的延长线于点G.
作业帮
(1)求证:FG=BE;
(2)探索点F是否在∠DCG的平分线上,并说明你的理由.
▼优质解答
答案和解析
(1)证明:∵EP⊥AE,
∴∠AEB+∠GEF=90°,
又∵∠AEB+∠BAE=90°,
∴∠GEF=∠BAE,
又∵FG⊥BC,
∴∠ABE=∠EGF=90°,
在△ABE与△EGF中,
∠ABE=∠EGF
∠BAE=∠GEF
AE=EF

∴△ABE≌△EGF(AAS),
∴FG=BE;
(2) 点F在∠DCG的平分线上,理由如下:
连接CF,如图:
作业帮
由(1)知:BC=AB=EG,
∴BC-EC=EG-EC,
∴BE=CG,
又∵FG=BE,
∴FG=CG,
又∵∠CGF=90°,
∴∠FCG=45°=
1
2
∠DCG,
∴CF平分∠DCG.
看了如图,E是正方形ABCD的边B...的网友还看了以下: