早教吧作业答案频道 -->数学-->
世界上最难算的数学题
题目详情
世界上最难算的数学题
▼优质解答
答案和解析
世界上最难的其实是“1+1”,楼主不要笑,楼主也不要认为我是在糊弄你,其实这是真的,这个题从古到今还没人能够算出来.哥德巴赫猜想(Goldbach Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个n �� 6之偶数,都可以表示成两个奇质数之和.
(b) 任何一个n �� 9之奇数,都可以表示成三个奇质数之和.
这就是著名的哥德巴赫猜想.从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如:
6 = 3 + 3,8 = 3 + 5,10 = 5 + 5 = 3 + 7,12 = 5 + 7,14 = 7 + 7 = 3 + 11,
16 = 5 + 11,18 = 5 + 13,....等等.
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但验格的数学证明尚待数学家的努力.目前最佳的结果是中国数学家 陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) �� “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式.
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”.
1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”.
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”.
1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”,“4 + 9 ”,“3 + 15 ”和“2 + 366 ”.
1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”.
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”.
1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数.
1956年,中国的王元证明了 “3 + 4 ”.
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”.
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,
中国的王元证明了 “1 + 4 ”.
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”.
1966年,中国的陈景润证明了 “1 + 2 ”.
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个n �� 6之偶数,都可以表示成两个奇质数之和.
(b) 任何一个n �� 9之奇数,都可以表示成三个奇质数之和.
这就是著名的哥德巴赫猜想.从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如:
6 = 3 + 3,8 = 3 + 5,10 = 5 + 5 = 3 + 7,12 = 5 + 7,14 = 7 + 7 = 3 + 11,
16 = 5 + 11,18 = 5 + 13,....等等.
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但验格的数学证明尚待数学家的努力.目前最佳的结果是中国数学家 陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) �� “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式.
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”.
1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”.
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”.
1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”,“4 + 9 ”,“3 + 15 ”和“2 + 366 ”.
1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”.
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”.
1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数.
1956年,中国的王元证明了 “3 + 4 ”.
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”.
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,
中国的王元证明了 “1 + 4 ”.
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”.
1966年,中国的陈景润证明了 “1 + 2 ”.
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测
看了世界上最难算的数学题...的网友还看了以下:
请问世界究竟有多少个国家?中国最新人口数量统计是多少?如题 请问世界究竟有多少个国家?哪个国家占世 2020-05-17 …
求这个作文的最佳题目,漫漫的人生道路是坎坷的,是艰辛的.发生的事如满天的繁星多得数也数不完,但我最 2020-06-21 …
怎么表达这道物理题的最后.题目是这样的:除太阳外,最靠近地球的恒星是半人马座中的比邻星,它离我们4 2020-08-03 …
英国历史学家霍布斯鲍姆认为:西方资本主义如何在大灾难中死里逃生和出现二战后的繁荣,“或许是20世纪历 2020-11-05 …
英国历史学家霍布斯鲍姆认为:西方资本主义如何在大灾难中死里逃生和出现二战后的繁荣,“或许是20世纪历 2020-11-05 …
关于能源的发展21世纪急需解决的科学问题首先就是资源问题.各种物质资源的缺乏始终是社会可持续发展的最 2020-11-24 …
哲学是关于世界观的学说,但哲学又不等于世界观。世界观所涉及的问题,是关于整个世界的最普遍、最一般的问 2020-11-24 …
老师让我们整理物理必修2,选秀3-1的60道大题,要最少2个问的,最好题短点的急用啊! 2020-11-24 …
关于诗歌朗诵的,最好题目是给母亲的歌 2021-01-31 …
英国历史学家霍布斯鲍姆认为:西方资本主义如何在大灾难中死里逃生和出现二战后的繁荣,“或许是20世纪历 2021-02-02 …
相关搜索:世界上最难算的数学题