早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在等差数列an中在数列{an}中,对任意自然数n∈N*恒有a1+a2+···+an=2n+1,则a1+a2^2+a3^3+···+an^n=求过程详解.==这是我们老师自己改的题!

题目详情
在等差数列an中在数列{an}中,对任意自然数n∈N*恒有a1+a2+···+an=2n+1,则a1+a2^2+a3^3+···+an^n=
求过程详解.= =
这是我们老师自己改的题!
▼优质解答
答案和解析

n=1时,a1=2×1-1=1
n≥2时,
a1+a2+...+a(n-1)+an=2n-1 (1)
a1+a2+...+a(n-1)=2(n-1)-1 (2)
(1)-(2)
an=2n-1-2(n-1)+1=2,为定值.
n=1时,a1=1≠2
数列{an}的通项公式为
an=1 n=1
2 n≥2
n=1时,a1=1
n≥2时,
a1+a2²+a3³+...+anⁿ
=1+2²+2³+...+2ⁿ
=1+4×[2^(n-1) -1]/(2-1)
=2^(n+1) -3
n=1时,2^(n+1)-3=2²-3=4-3=1,同样满足.
综上,得
a1+a2²+a3³+...+anⁿ=2^(n+1) -3