早教吧作业答案频道 -->其他-->
已知f(x)=-x2+ax-4(a>0)对于x∈[1,3]恒小于或等于零.(Ⅰ)求正数a的值所组成的集合A;(Ⅱ)设关于x的方程f(x)+6=0的两个根为x1、x2,若对任意x∈A及t∈[-1,1],不等式m2+tm-2+26≥|x1-x|
题目详情
已知f(x)=-x2+ax-4(a>0)对于x∈[1,3]恒小于或等于零.
(Ⅰ)求正数a的值所组成的集合A;
(Ⅱ)设关于x的方程f(x)+6=0的两个根为x1、x2,若对任意x∈A及t∈[-1,1],不等式m2+tm-2+2
≥|x1-x|恒成立,求m的取值范围.
(Ⅰ)求正数a的值所组成的集合A;
(Ⅱ)设关于x的方程f(x)+6=0的两个根为x1、x2,若对任意x∈A及t∈[-1,1],不等式m2+tm-2+2
6 |
▼优质解答
答案和解析
(Ⅰ)∵f(x)=-x2+ax-4(a>0)对于x∈[1,3]恒小于或等于零.
∴a≤x+
对x∈[1,3]恒成立.
∵x+
≥4(当且仅当x=2时,等号成立),
∴0<a≤4,
∴A=(0,4].
(Ⅱ)方程f(x)+6=0可化为x2-ax-2=0,
∵△=a2+8>0,
∴x1、x2是方程方程f(x)+6=0的两个不同的根;
∴x1+x2=a,x1•x2=-2,
∴|x1-x2|=
,
∵0<a≤4,∴2
<|x1−x2|=
≤2
.
∴不等式m2+tm−2+2
≥|x1−x2|对任意x∈A及t∈[-1,1]恒成立可化为
m2+tm-2≥0对任意t∈[-1,1]恒成立,
设g(t)=m2+tm-2=mt+(m2-2),
则
∴a≤x+
4 |
x |
∵x+
4 |
x |
∴0<a≤4,
∴A=(0,4].
(Ⅱ)方程f(x)+6=0可化为x2-ax-2=0,
∵△=a2+8>0,
∴x1、x2是方程方程f(x)+6=0的两个不同的根;
∴x1+x2=a,x1•x2=-2,
∴|x1-x2|=
a2+8 |
∵0<a≤4,∴2
2 |
a2+8 |
6 |
∴不等式m2+tm−2+2
6 |
m2+tm-2≥0对任意t∈[-1,1]恒成立,
设g(t)=m2+tm-2=mt+(m2-2),
则
|
看了已知f(x)=-x2+ax-4...的网友还看了以下:
已知函数f(x)=(a*2^x+a2-2)÷(2^x-1)(x∈R,x≠0),其中a为常数,且a﹤ 2020-05-13 …
已知x+y=3,xy=2,求x^2+y^2的值 已知x^2-4=0,求代数式x(x+1)^2-x( 2020-05-13 …
已知关于x的方程x²-(m+2)x+2m=0(1)求证方程恒有两个不相等的实数根(2)若此方.已知 2020-05-16 …
哪位达人知道,分式的标准拆项步骤是什么?比如有这个式子1/[(x+1)^2*(x-1)的拆项为什么 2020-07-01 …
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)且同时满足下列条件:①f(-1)=0②对 2020-07-26 …
已知函数f(x)=2^x-4^x已知函数f(x)=2^x-4^x1、求f(x)的值域2、解不等式f 2020-07-27 …
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.(1)求实常数a的取值范围;(2)设g(x 2020-07-27 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
求教已知函数f(x)满足f(x)=f'(1)e^(x-1)-f(0)x+(1/2)x²已知函数f(x 2020-12-08 …