早教吧作业答案频道 -->数学-->
求逆矩阵1).若A是n阶方阵且满足A^2=A,且矩阵A+E可逆,则(A+E)^-1=?答案是-1/2(A-2E).请问是怎么求出来的呢?2).设A,B,A+B,A^-1+B^-1均为n阶可逆矩阵,则(A^-1+B^-1)^-1=?答案是A[(A+B)^-1]B.请问啊,上面的两个答
题目详情
求逆矩阵
1).若A是n阶方阵且满足A^2=A,且矩阵A+E可逆,则(A+E)^-1=?
答案是-1/2(A-2E).请问是怎么求出来的呢?
2).设A,B,A+B,A^-1+B^-1均为n阶可逆矩阵,则(A^-1+B^-1)^-1=?
答案是A[(A+B)^-1]B.
请问啊,上面的两个答案是怎么求的?
1).若A是n阶方阵且满足A^2=A,且矩阵A+E可逆,则(A+E)^-1=?
答案是-1/2(A-2E).请问是怎么求出来的呢?
2).设A,B,A+B,A^-1+B^-1均为n阶可逆矩阵,则(A^-1+B^-1)^-1=?
答案是A[(A+B)^-1]B.
请问啊,上面的两个答案是怎么求的?
▼优质解答
答案和解析
51 分钟前 WskTuuYtyh| 十二级
1).若A是n阶方阵且满足A^2=A,且矩阵A+E可逆,则(A+E)^-1=?
答案是-1/2(A-2E).请问是怎么求出来的呢?
以下用AA表示A^2.
由已知,(A+E)(A-2E)=AA-A-2E=-2E,因A+E可逆,
故A-2E=(A+E)^-1*(-2),于是 (A+E)^-1=-(A-2E)/2
2).设A,B,A+B,A^-1+B^-1均为n阶可逆矩阵,则(A^-1+B^-1)^-1=?
答案是A[(A+B)^-1]B.
A^-1*(A^-1+B^-1)^-1*B^-1
=(B(A^-1+B^-1)A) ^-1
=(BA^-1+E)A)^-1
=(B+A)^-1
=(A+B)^-1
于是
(A^-1+B^-1)^-1=A * (A+B)^-1 *B.
注意:此题中,A,B的位置具有对称性.因此,交换A,B得到的式子也是正确的:
(A^-1+B^-1)^-1=(B^-1+A^-1)^-1=B * (A+B)^-1 *A
1).若A是n阶方阵且满足A^2=A,且矩阵A+E可逆,则(A+E)^-1=?
答案是-1/2(A-2E).请问是怎么求出来的呢?
以下用AA表示A^2.
由已知,(A+E)(A-2E)=AA-A-2E=-2E,因A+E可逆,
故A-2E=(A+E)^-1*(-2),于是 (A+E)^-1=-(A-2E)/2
2).设A,B,A+B,A^-1+B^-1均为n阶可逆矩阵,则(A^-1+B^-1)^-1=?
答案是A[(A+B)^-1]B.
A^-1*(A^-1+B^-1)^-1*B^-1
=(B(A^-1+B^-1)A) ^-1
=(BA^-1+E)A)^-1
=(B+A)^-1
=(A+B)^-1
于是
(A^-1+B^-1)^-1=A * (A+B)^-1 *B.
注意:此题中,A,B的位置具有对称性.因此,交换A,B得到的式子也是正确的:
(A^-1+B^-1)^-1=(B^-1+A^-1)^-1=B * (A+B)^-1 *A
看了求逆矩阵1).若A是n阶方阵且...的网友还看了以下:
已知数集A满足:a≠1 a∈A 1/(1-a)∈A 若2∈A 则在A中还有另外两个元素,求这两个元 2020-05-15 …
已知平面向量a,b满足|a|=1,|b|=2,a与b的夹角为π/3,以a,b为邻边作平行四边形,则 2020-05-23 …
如图1,已知点A(a,0),B(0,b),且a、b满足a+1+(a+b+3)2=0,▱ABCD的边 2020-06-11 …
若直线满足如下条件,分别求出其方程(1)斜率为3/4,且与两坐标轴围成的三角形面积为6(2)经过两 2020-06-12 …
我们把定义在R上,且满足f(x+T)=af(x)(其中常数a,T满足a≠1,a≠0,T≠0)的函数 2020-08-02 …
两道解析几何题(急)1、已知两圆相交于两点A(1,3),B(m,-1),两圆圆心都在直线x-y+c 2020-08-02 …
如果实数abc满足|a-1|+〔b+3)的二次方+根号3c-1=0求abc的125次方除以九次方乘以 2020-10-30 …
已知平面向量a,b满足|a|=1,|b|=2,a与b的夹角为60°,则“m=1”是“(a-mb)⊥a 2020-11-02 …
(2013•盐城模拟)如图1,已知点A(a,0),B(0,b),且a、b满足a+1+(a+b+3)2 2020-11-12 …
数列{an}满足a(1)=1,a(n+1)-3a(n)=3^n数列{bn}满足b(n)=3^(-n) 2020-11-20 …