早教吧作业答案频道 -->数学-->
若函数可导,则导函数连续命题:若f(x)在I上可导,则其导函数连续.证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得(f(x)-f(x0))/(X-X0)=f’(a),a在x
题目详情
若函数可导,则导函数连续
命题:若f(x)在I上可导,则其导函数连续.
证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得 ( f(x)-f(x0) )/( X-X0 )=f’(a),a在x与x0之间
由于当 x→x0-时,a→x0-,所以上式两边令x→x0-取极限,
lim( f(x)-f(x0) )/(x-x0) (x→x0-) = lim f‘(a)(a→x0-)=lim f’(x)
(x→x0-)
即左导数= limf’(x) (x→x0-)
同理,右导数=limf’(x) (x→x0+)
因为f(x)在x0可导,所以左导数=右导数=f’(x0)
所以limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0)
所以f’(x)连续
命题是错的,但证明错在哪?
命题:若f(x)在I上可导,则其导函数连续.
证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得 ( f(x)-f(x0) )/( X-X0 )=f’(a),a在x与x0之间
由于当 x→x0-时,a→x0-,所以上式两边令x→x0-取极限,
lim( f(x)-f(x0) )/(x-x0) (x→x0-) = lim f‘(a)(a→x0-)=lim f’(x)
(x→x0-)
即左导数= limf’(x) (x→x0-)
同理,右导数=limf’(x) (x→x0+)
因为f(x)在x0可导,所以左导数=右导数=f’(x0)
所以limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0)
所以f’(x)连续
命题是错的,但证明错在哪?
▼优质解答
答案和解析
回复2楼
证明了 limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0),就是导函数在x0的极限值=函数值,所以连续,与“f(X0+△x)-f(X0) 在△x趋于0 时 等于0”是等价的
证明了 limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0),就是导函数在x0的极限值=函数值,所以连续,与“f(X0+△x)-f(X0) 在△x趋于0 时 等于0”是等价的
看了若函数可导,则导函数连续命题:...的网友还看了以下:
含有f(x)和积分上限函数的方程求解,需要对方程左右求导,但题中仅说f(x)连续(或可微、或可导) 2020-05-13 …
x是A或是B的否定命题是什么?x是A或是B.x既是A又是B.x和y都是A.x或y是A.以上各命题的 2020-05-17 …
设F(x)=f(x)xx≠0f(0)x=0,其中f(x)在x=0处可导,f′(0)≠0,f(0)= 2020-07-09 …
在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p1“第一次射击击中飞机”,命题p2“第二次射 2020-07-14 …
关于充要条件的问题.由r推出q或p[比如(x+3)(x+2)=0推出x=-2或x=-3].(说明: 2020-07-15 …
二元随机变量的联合分布函数具有右连续性,是指x和y同时都满足具有右连续么?还是只要一个满足就行.如 2020-07-25 …
连续函数列{fn(x)的极限函数是否为连续的?为何?连续函数列{fn(x)}的极限函数f(x)是否 2020-07-31 …
在一次模拟射击游戏中,小李连续射击了两次,设命题:“第一次射击中靶”,命题:“第二次射击中靶”,试用 2020-10-30 …
如下、详见问题补充懂?每吸一包烟减少寿命2时24分,一人不吸烟能活75,如果他一天一包,连续x年,这 2020-11-06 …
逻辑连词“且”“或”“非”求大神帮助如果p、q是两个简单命题,试列出下面五个命题的真假表,看一看哪些 2020-12-07 …