早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一只青蛙在平面直角坐标系上从(1,1)开始,可以按照如下两种方式跳跃1:能从任意一点(a,b)跳到点(2a,b)或(a,2b)2:对于点(a,b)如果a>b,则能从(a,b)跳到(a-b,b),如果a<b,则能从(a,b)跳到

题目详情


▼优质解答
答案和解析
(1)能到达点(3,5)和点(200,6).
从(1,1)出发到(3,5)的路径为:
(1,1)→(2,1)→(4,1)→(3,1)→(3,2)
→(3,4)→(3,8)→(3,5).
从(1,1)出发到(200,6)的路径为:
(1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6)
→(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6)
→(160,6)→(320,6)→(前面的数反复减20次6)→(200,6);
(2)不能到达点(12,60)和(200,5).
理由如下:
∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数,
∴由规则①知,跳跃不改变前后两数的公共奇约数.
∵如果a>b,a和b的最大公约数=(a-b)和b的最大公约数,
如果a<b,a和b的最大公约数=(b-a)和b的最大公约数,
∴由规则②知,跳跃不改变前后两数的最大公约数.
从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.
∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5.
∴从(1,1)出发不可能到达给定点(12,60)和(200,5).
看了一只青蛙在平面直角坐标系上从(...的网友还看了以下: