早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知圆A的圆心(根号2,0)半径为1,双曲线的两条渐近线都过原点且与圆A相切,已知双曲线C的一个顶点为P(0,√2),它的两条渐近线经过原点,并且都与圆(x-√2)2+y^2=1相切(1)求双曲线C的方程(2

题目详情
已知圆A的圆心(根号2,0)半径为1,双曲线的两条渐近线都过原点且与圆A相切,
已知双曲线C的一个顶点为P(0,√2),
它的两条渐近线经过原点,
并且都与圆(x-√2)2+y^2=1相切
(1)求双曲线C的方程
(2)过M(0,2√2)做倾斜角为a的直线交双曲线于A B
两点且a[0,π/4)
求三角形 APB的面积的最小值及取得最小值时a的值
第一问我会做,第二问就不会了
▼优质解答
答案和解析
设AB方程为y=tanax+2√2
将其代入双曲线方程可得到关于x的一元二次方程,其中x的解即为A与B的横坐标,设为x1,x2
则可得x1+x2和x1x2,它们都是含tana的量,三角形的面积可表示成S=√2*|x1-x2|/2
|x1-x2|=√[(x1+x2)^2-41x2] 可得到关于tana的一个量,当该值取最小值时,S最小,该值含根式,看根号内部,内部可看做二次函数,最值你就会了,由于很多式子不好打出来,就只好说个大概了