早教吧 育儿知识 作业答案 考试题库 百科 知识分享

超难22.考察Fn=[aF(n-1)+b]/[cF(n-1)+d](a,b,c,d为常数),称x=(ax+b)/(cx+d)(*)为该递推关系的不动点方程:(1)若(*)有两个相异复数根x1和x2,试证明数列[(Fn-x1)/(Fn-x2)]是等比数列,并求出公比和Fn.(2

题目详情



▼优质解答
答案和解析
(1)
F(n)-x1
=[aF(n-1)+b]/[cF(n-1)+d]-x1
=[aF(n-1)+b]/[cF(n-1)+d]-(ax1+b)/(cx1+d)
={(ad-bc)[F(n-1)-x1]}/{[cF(n-1)+d](cx1+d)}
同理
F(n)-x2
={(ad-bc)[F(n-1)-x2]}/{[cF(n-1)+d](cx2+d)}
所以
{[F(n)-x1]/[F(n)-x2]}={[F(n-1)-x1]/[F(n-1)-x2]}*[(cx2+d)/(cx1+d)]

{[F(n)-x1]/[F(n)-x2]}/{[F(n-1)-x1]/[F(n-1)-x2]}=[(cx2+d)/(cx1+d)]
所以
{[F(n)-x1]/[F(n)-x2]}为等比数列,公比为[(cx2+d)/(cx1+d)]
至于F(n),不知道F(0)(或者其他某一项)是没有办法得出来的.就像这个等比数列,只知道公比,得不出通项公式来.
(2)
不想做了.