早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设X,Y是相互独立的两个随机变量,C为常数,请证明(1)D(CX)=C2D(X)(2)D(X+Y)=D(X)+D(Y)注:D(X)表示随机变量X的方差,2是C的平方

题目详情
设X,Y是相互独立的两个随机变量,C为常数,请证明
(1)D(CX)=C2D(X)
(2)D(X+Y)=D(X)+D(Y)注:D(X)表示随机变量X的方差,2是C的平方
▼优质解答
答案和解析
(1) D(CX)=E[CX-E(CX)]^2
=E[CX-CE(X)]^2
=E(C^2*[X-E(X)]^2)
=C^2*E[X-E(X)]^2
=C^2*D(X)
(2) D(X+Y)=E[X+Y-E(X+Y)]^2
=E[X+Y-E(X)-E(Y)]^2
=E[(X-E(X))^2+2(X-EX)(Y-EY)+(Y-E(Y))^2]
=E[X-E(X)]^2+E[Y-E(Y)]^2+2E[X-E(X)]E[Y-E(Y)] X,Y是相互独立
=D(X)+D(Y)