早教吧作业答案频道 -->数学-->
设A为n*n矩阵,证明:如果A^2=E,那么R(A+E)+R(A-E)=n
题目详情
设A为n*n矩阵,证明:如果A^2=E,那么R(A+E)+R(A-E)=n
▼优质解答
答案和解析
首先确定 A的秩
由1=|E|=|A^2|=|A|×|A|
可知 |A|不等于0,因此A的秩为n.
A^2=E=> A^2-E=0=>(A-E)(A+E)=0
为方便计,记 B=A-E, C=A+E
则 BC=0, 且B+C=2A
由公式: r(B+C)≤r(B)+r(C) 知
n=r(2A)=r(B+C)≤r(B)+r(C).(1)
再由Sylvester公式:r(BC)≥r(B)+r(C)-n 知
0=r(BC)≥r(B)+r(C)-n, 因此有:
n≥r(B)+r(C).(2)
结合(1)(2) 得:
r(B)+r(C)=n,
即 r(A-E)+r(A+E)=n
由1=|E|=|A^2|=|A|×|A|
可知 |A|不等于0,因此A的秩为n.
A^2=E=> A^2-E=0=>(A-E)(A+E)=0
为方便计,记 B=A-E, C=A+E
则 BC=0, 且B+C=2A
由公式: r(B+C)≤r(B)+r(C) 知
n=r(2A)=r(B+C)≤r(B)+r(C).(1)
再由Sylvester公式:r(BC)≥r(B)+r(C)-n 知
0=r(BC)≥r(B)+r(C)-n, 因此有:
n≥r(B)+r(C).(2)
结合(1)(2) 得:
r(B)+r(C)=n,
即 r(A-E)+r(A+E)=n
看了 设A为n*n矩阵,证明:如果...的网友还看了以下:
求教工程数学线性代数1若n阶矩阵A为正交矩阵,则A必为可逆矩阵且A-1=A'2若Rank(A)=n 2020-04-12 …
设A为n阶矩阵,证明:R(A+I)+R(A-I)>=n已知R(A)=R(kA),k≠0;R(A+B 2020-05-14 …
设A为n阶矩阵,若有n阶初等矩阵P1,P2,…,Pr,使P1,P2,…Pr(A,E)=(E,B), 2020-05-14 …
设A为n阶矩阵,正整数k>=2,那么:(1)若A为对称矩阵,问A∧k是否为对称矩阵?为什么?(2) 2020-05-14 …
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则()A.λE-A=λE-BB.A与B有相同的 2020-05-14 …
关于线性代数的问题,急·····1)设A为n阶矩阵,若存在正整数k使得A^k=O,则称A为幂零矩阵 2020-05-14 …
线性代数中常用的公式r(A)+r(B)≤n何时取等号(AB=0)A为m×n矩阵,B为n×s矩阵,如 2020-06-08 …
设A,B为n阶矩阵,2A-B-AB=I,A^2=A,其中I为n阶单位矩阵(1)证明(A-B)为可逆 2020-06-18 …
设A,B为n阶矩阵,且满足2(B^-1)A=A-4E其中E为n阶单位矩阵,(1)证明:B-2E为可 2020-07-21 …
设A为n阶矩阵.若存在正整数m使Am=O,则称A为n阶幂零矩阵.现设A为n阶幂零矩阵,E为n阶单位 2020-07-22 …