早教吧作业答案频道 -->数学-->
四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED.呃,一道数学题……四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED,求证:BF∥平面AEC的充要条件是点F为棱PC
题目详情
四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED.呃,一道数学题……
四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED,求证:BF∥平面AEC的充要条件是点F为棱PC的中点.
就是这样,我已经挠了脑袋一个晚上了……还没挠出来.
四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED,求证:BF∥平面AEC的充要条件是点F为棱PC的中点.
就是这样,我已经挠了脑袋一个晚上了……还没挠出来.
▼优质解答
答案和解析
我来帮你一下,
1,已知F是PC中点,取PE中点M,连结MF,连结AC和BD交于O,连结OE,BM,
MF是△PEC中位线,MF//CE,
四边形ABCD是平行四边形,则对角线互平分,O是BD中点,PE=2DE,PM=EM=DE,
OE是△DBM中位线,
OE//BM,
BM∩MF=M,
OE∩CE=E,
∴平面MFB//平面CEO(平面AEC),
BF∈平面MFB,
∴BF//平面AEC.
2、已知BF//平面AEC,
与前相同,取PE中点M,OE是△DMB中位线,OE//MB,
OE∈平面AEC,
故BM//平面AEC,
MB∩BF=B,
故平面BMF//平面AEC,
MF∈平面BMF,
故MF//平面AEC,
平面PDC∩平面AEC=EC,
故MF//CE,
在△PEC中.M是PE中点,MF//CE,故MF是△PEC中位线,
∴F是PC中点.
1,已知F是PC中点,取PE中点M,连结MF,连结AC和BD交于O,连结OE,BM,
MF是△PEC中位线,MF//CE,
四边形ABCD是平行四边形,则对角线互平分,O是BD中点,PE=2DE,PM=EM=DE,
OE是△DBM中位线,
OE//BM,
BM∩MF=M,
OE∩CE=E,
∴平面MFB//平面CEO(平面AEC),
BF∈平面MFB,
∴BF//平面AEC.
2、已知BF//平面AEC,
与前相同,取PE中点M,OE是△DMB中位线,OE//MB,
OE∈平面AEC,
故BM//平面AEC,
MB∩BF=B,
故平面BMF//平面AEC,
MF∈平面BMF,
故MF//平面AEC,
平面PDC∩平面AEC=EC,
故MF//CE,
在△PEC中.M是PE中点,MF//CE,故MF是△PEC中位线,
∴F是PC中点.
看了 四棱锥P-ABCD的底面是平...的网友还看了以下:
已知平面a交平面b=L,A平行于a,A平行于b,求证:A平行于L 2020-04-05 …
下列是平行四边形的定义的是()A.平行四边形两组对边相等B.平行四边形两组对角相等C.对角线互相平 2020-05-12 …
下列说法正确的是A.如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.如果直线a和平 2020-05-13 …
如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相 2020-05-13 …
高中几何证明题~有关平行~设a,b是异面直线,直线a在平面A内,直线b在平面B内,且a平行于B,直 2020-06-03 …
已知a,b,c,为三条不重合的直线,α,β,γ为三个不重合的平面,先给出个命题1.a平行c,b平行 2020-07-09 …
(1)a是平行线,b也是平行线.…………………()(2)a和b互相平行.………………………………( 2020-08-01 …
据如图判断对错:(1)a是平行线,b也是平行线.…(2)a和b互相平行.…(3)a和b都是平行线. 2020-08-01 …
如图A’B’平行BA,B’C’平行CB,C'A'平行AC,〈ABC与〈B'有什么关系?线段AB'与 2020-08-02 …
如图,在三棱柱...接上,三棱柱ABC-A'B'C'中,D为BC上一点,且A'B平行于平面AC'D. 2020-11-03 …