早教吧 育儿知识 作业答案 考试题库 百科 知识分享

将正方形ABCD和正方形AEFG按图所示放置,取CF、BG的中点M、N,连接MN.(1)求证:MN⊥BG.MN=二分之一BG(2)将图1中的正方形AEFG绕A点顺时针旋转α角(0°<α<90°)得图2,取CF、BG的中点M、N,连接MN.问

题目详情
将正方形ABCD和正方形AEFG按图所示放置,取CF、BG的中点M、N,连接MN.(1)求证:MN⊥BG.MN=二分之一BG
(2)将图1中的正方形AEFG绕A点顺时针旋转α角(0°<α<90°)得图2,取CF、BG的中点M、N,连接MN.问(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由
▼优质解答
答案和解析
(1)BG=2AM,AM⊥BG;
(2)延长AM至K,使MK=AM,连接DK、EK,得平行四边形ADKE.
则EK⊥DC,∠EKD=∠EAD,
∴∠KDC=∠GAD,
∴∠BAG=∠ADK,
易证△ABG≌△DAK,
∴BG=2AM,∠DAK=∠ABG,
∴AM⊥BG.
(3)如图所示,BG=2AM,AM⊥BG.