早教吧作业答案频道 -->数学-->
计算行列式 |1+a1 1 …… 1 | | 1 1+a2 …… 1 | | …… …… …… | | 1 1 …… 1+an |
题目详情
计算行列式 |1+a1 1 …… 1 | | 1 1+a2 …… 1 | | …… …… …… | | 1 1 …… 1+an |
▼优质解答
答案和解析
1+a1 1 1 …… 1 1
1 1+a2 1 …… 1 1
1 1 1+a3 …… 1 1
…… …… …… …… …… …… ……
1 1 1 ……1+a 1
1 1 1 …… 1 1+an
依次用第n行减去第n-1行,第n-1行减去第n-2行,……,第2行减去第1行,得
1+a1 1 1 …… 1 1
-a1 a2 0 …… 0 0
0 -a2 a3 …… 0 0
…… …… …… …… …… …… ……
0 0 0 …… a 0
0 0 0 …… -a an
按第一行展开,得
原式 = (1+a1)*a2*a3*a4*……*a*an
+ (-1)*(-a1)*a3*a4*……*a*an
+ [(-1)^2]*(-a1)*(-a2)*a4*……*a*an
+…………+
+ [(-1)^(n-2)]*(-a1)*(-a2)*(-a3)*……*(-a)*an
+ [(-1)^(n-1)]*(-a1)*(-a2)*(-a3)*……*(-a)*(-a)
= a1*a2*a3*a4*……*a*an
+a2*a3*a4*……*a*an
+ a1*a3*a4*……*a*an
+ a1*a2*a4*……*a*an
+…………+
+ a1*a2*a3*……*a*an
+ a1*a2*a3*……*a*a
(1) 若数列a1、a2、a3、……、an中至少有两个数等于零,则
行列式中就会出现至少两个以上均为1的相同行,
∴原行列式=0
(2) 若数列a1、a2、a3、……、an中有且仅有一个数等于零,假设a i =0(其中i∈[1,n])则
原行列式 = a1*a2*a3*……* ai-1 * ai+1*……*an (数列中不算ai的其余n-1个数的乘积)
(3) 若数列a1、a2、a3、……、an均不为零,则
原行列式 = a1*a2*a3*a4*……*a*an * [ 1+1/a1+1/a2+1/a3+……+1/an ]
1 1+a2 1 …… 1 1
1 1 1+a3 …… 1 1
…… …… …… …… …… …… ……
1 1 1 ……1+a 1
1 1 1 …… 1 1+an
依次用第n行减去第n-1行,第n-1行减去第n-2行,……,第2行减去第1行,得
1+a1 1 1 …… 1 1
-a1 a2 0 …… 0 0
0 -a2 a3 …… 0 0
…… …… …… …… …… …… ……
0 0 0 …… a 0
0 0 0 …… -a an
按第一行展开,得
原式 = (1+a1)*a2*a3*a4*……*a*an
+ (-1)*(-a1)*a3*a4*……*a*an
+ [(-1)^2]*(-a1)*(-a2)*a4*……*a*an
+…………+
+ [(-1)^(n-2)]*(-a1)*(-a2)*(-a3)*……*(-a)*an
+ [(-1)^(n-1)]*(-a1)*(-a2)*(-a3)*……*(-a)*(-a)
= a1*a2*a3*a4*……*a*an
+a2*a3*a4*……*a*an
+ a1*a3*a4*……*a*an
+ a1*a2*a4*……*a*an
+…………+
+ a1*a2*a3*……*a*an
+ a1*a2*a3*……*a*a
(1) 若数列a1、a2、a3、……、an中至少有两个数等于零,则
行列式中就会出现至少两个以上均为1的相同行,
∴原行列式=0
(2) 若数列a1、a2、a3、……、an中有且仅有一个数等于零,假设a i =0(其中i∈[1,n])则
原行列式 = a1*a2*a3*……* ai-1 * ai+1*……*an (数列中不算ai的其余n-1个数的乘积)
(3) 若数列a1、a2、a3、……、an均不为零,则
原行列式 = a1*a2*a3*a4*……*a*an * [ 1+1/a1+1/a2+1/a3+……+1/an ]
看了 计算行列式 |1+a1 1 ...的网友还看了以下:
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
求数列通项公式Sn是等比数列{an}的前n项和,公比q不等于1,已知1是(1/2)*S2和(1/3 2020-05-13 …
已知数列{an}满足a1=1,an=a1+1/2a2+1/3a3+...+1/n-1an-1(n> 2020-05-16 …
an+1=(an+4)/(2an+3),a1=3.求通项公式an.an+1-1=(-an+1)/( 2020-05-17 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
有下列式子:1/(1×2)=1/2=1/1-1/2,1/(2×3)=1/6=1/2-1/3,1/( 2020-06-03 …
数列不等式递推式如图,Sn为其前n项和an+1=((n+2)an²-nan+n+1)/(an²+1 2020-06-27 …
1、a1=14a2=-2a(n+2)=2a(n+1)+15an若{a(n+1)+k*an}是等比数 2020-07-09 …
(1/2+1/3+1/4+...1/2013)X(1+1/2+1/3+1/4+...1/2012) 2020-07-14 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …