早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在棱长为2的正方体ABCD—A1B1C1D1中,E、F分别为A1D1和CC1的中点求证EF平行平面ACD12,求三棱锥E—ACD1的体积.

题目详情
在棱长为2的正方体ABCD—A1B1C1D1中,E、F分别为A1D1和CC1的中点求证EF平行平面ACD1
2,求三棱锥E—ACD1的体积.
▼优质解答
答案和解析
(1)取C1D1中点M,连结MF,ME,A1C1,
MF是△C1DC的中位线,
MF//CD1,
ME又是△A1D1C1的中位线,
ME//A1C1,
又因AA1//CC1,AA1=CC1,
四边形AA1C1C是平行四边形,
A1C1//AC,
故ME//AC,
ME∩MF=M,
AC∩CD1=C
平面EFM//平面ACD1,
EF∈平面EFM,
∴EF//平面ACD1.
(2)把三棱锥E-ACD1看成以三角形AED1为底,高为CD的三棱锥,
S△AED1=S△AA1D1/2=(2*2/2)/2=1,
VC-AED1=S△AED1*CD/3=1*2/3=2/3,
三棱锥E—ACD1的体积=2/3.