早教吧作业答案频道 -->数学-->
已知ABCD是矩形,PD垂直平面ABCD,PD=DC=a,AD=根号2 a,M,N分别是AD,PB中点,求点A到平面MNC的距离.向量
题目详情
已知ABCD是矩形,PD垂直平面ABCD,PD=DC=a,AD=根号2 a,M,N分别是AD,PB中点,求点A到平面MNC的距离.向量
▼优质解答
答案和解析
如图
PD=DC=a,所以PC=a*根号2
PD⊥面ABCD,所以PD⊥BC,
所以BC⊥面PDC,
所以BC⊥PC,△PBC是等腰直角△;
N为PB中点,PB⊥CN;
△ DCM和△CBD为直角三角形,
DC/DM=根号2=BC/CD;
△ DCM相似于△CBD;
所以∠CDB=∠DMC,
所以∠CDB+∠DCO=90°=∠COD,
所以CO⊥OD;又CO⊥DP,
所以CO⊥面DPB;所以CO⊥PB
所以PB⊥面MNC
作直线AR‖CM交DB于R,
RQ‖ON交PB于Q;知面MNC‖ARQ;
A到平面MNC的距离就是
Q点到平面MNC的距离,
也即是QN的长度;
CN=BN=a; OD=BR=a/根号3; OR= a/根号3; 所以NQ=a/2
所以A到平面MNC的距离a/2
PD=DC=a,所以PC=a*根号2
PD⊥面ABCD,所以PD⊥BC,
所以BC⊥面PDC,
所以BC⊥PC,△PBC是等腰直角△;
N为PB中点,PB⊥CN;
△ DCM和△CBD为直角三角形,
DC/DM=根号2=BC/CD;
△ DCM相似于△CBD;
所以∠CDB=∠DMC,
所以∠CDB+∠DCO=90°=∠COD,
所以CO⊥OD;又CO⊥DP,
所以CO⊥面DPB;所以CO⊥PB
所以PB⊥面MNC
作直线AR‖CM交DB于R,
RQ‖ON交PB于Q;知面MNC‖ARQ;
A到平面MNC的距离就是
Q点到平面MNC的距离,
也即是QN的长度;
CN=BN=a; OD=BR=a/根号3; OR= a/根号3; 所以NQ=a/2
所以A到平面MNC的距离a/2
看了 已知ABCD是矩形,PD垂直...的网友还看了以下:
如图所示,正比例函数y=ax的图像与反比例函数y=k/x的图像交于点A(3,2)M(m,n)是反比 2020-04-08 …
如图,直线a垂直直线b,试作线段MN分别关于a、b成轴对称的线段M’N’和M”N”,并说如图,直线 2020-04-26 …
高中数学困惑根据下列符号表示的语句,说明点、线、面之间的位置关系l⊂a,m∩a=A,A不属于l书上 2020-05-13 …
平面直角坐标系中直线y=kx+b(b>0)经过点M(m,n)和N(m+n,1)(m>0,n>1), 2020-05-16 …
金鱼缸B长30cm,宽20cm,装了36cm深的水,金鱼缸A长40cm,宽30cm,高20cm.如 2020-05-17 …
在直角坐标系中,一次函数y=x+m与反比例函数y=m/x在第一象限交与A在直角坐标系中,一次函数y 2020-05-22 …
向量的垂直题:设直线n和直线m的斜率为k和p,则直线n有方向向量a=(1,k).直线m有方向向量b 2020-08-02 …
已知点M(a,b)(ab≠0)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l 2020-11-02 …
在F=m*a中,fma分别表示什么,那么F可以表示为物体的速度还是物体的速度变化量? 2020-11-04 …
牛顿第二运动定律公式F=m*a中Fma分别是什么? 2020-11-27 …