早教吧作业答案频道 -->数学-->
如图,ABCD是正方形,PA⊥平面ABCD,且PA=AB=a.则二面角B-PC-D的度数为作BE⊥PC于E,连DE则由△PBC≌△PDC知∠BPE=∠DPE从而△PBE≌△PDE∴∠DEP=∠BEP=90°,且BE=DE∴∠BED为二面角B-PC-D的平面角
题目详情
如图,ABCD是正方形,PA⊥平面ABCD,且PA=AB=a.则二面角B-PC-D的度数为
作BE⊥PC于E,连DE
则由△PBC≌△PDC知∠BPE=∠DPE
从而△PBE≌△PDE
∴∠DEP=∠BEP=90°,且BE=DE
∴∠BED为二面角B-PC-D的平面角
∵PA⊥平面ABCD,∴PA⊥BC,又AB⊥BC,
∴BC⊥平面PAB,∴BC⊥PB,
∴BE=PB•BCPC=三分之根号六a,BD=2a
∴,
∴∠BEO=60°,∴∠BED=120°
∴二面角B-PC-D的度数为120°.
我想要问,为什么“取BD中点O,则sin∠BEO=BOBE=二分之根号三”eo垂直于bd么?
作BE⊥PC于E,连DE
则由△PBC≌△PDC知∠BPE=∠DPE
从而△PBE≌△PDE
∴∠DEP=∠BEP=90°,且BE=DE
∴∠BED为二面角B-PC-D的平面角
∵PA⊥平面ABCD,∴PA⊥BC,又AB⊥BC,
∴BC⊥平面PAB,∴BC⊥PB,
∴BE=PB•BCPC=三分之根号六a,BD=2a
∴,
∴∠BEO=60°,∴∠BED=120°
∴二面角B-PC-D的度数为120°.
我想要问,为什么“取BD中点O,则sin∠BEO=BOBE=二分之根号三”eo垂直于bd么?
▼优质解答
答案和解析
当然了 ,因为PA⊥DB,正方形中 易得DB⊥AC 所以DB⊥平面PAC EO是平面PAC上的点 所以EO当然⊥DB
希望对你有所帮助
希望对你有所帮助
看了 如图,ABCD是正方形,PA...的网友还看了以下:
matlab求微分方程,常数项比如y=dsolve("Du=((a-u-b)*e-u*d)/(e* 2020-05-14 …
设栈的初始为空,元素a,b,c,d,e,f,g依次入栈,以下出栈序列不可能出现的是A,a,b,c, 2020-05-17 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
用以下英文宇母填在上a,a,a,a,a,a,b,e,e,d,e,e,e,e,e,e,f,g,g用以 2020-06-24 …
求微分方程的特解求微分方程cosydx+[1+e^[-(x)]sinydy=0,y(0)=π/4 2020-06-27 …
设一数列a,b,c,d,e,f,通过栈结构不可能不可能排成的顺序数列为()A)c,b,e,f,d, 2020-06-28 …
英语单词填空1.时间状语:d-r-n-2.场所:b-s-s-o-f-r--e-a-t-e-t3.教 2020-07-14 …
五元一次方程的解法0.01349/[e+0.6842(1-e)]=a0.8638/[e+0.565 2020-07-16 …
多元一次方程求解a=0.1072(a+b+c+d+e)b=0.041(a+b+c+d+e)c=0.2 2020-12-14 …
A+B+C=84,D+E+F=111,H+I+J=138,A+D+H=124,B+E+I=148,C 2020-12-14 …