早教吧 育儿知识 作业答案 考试题库 百科 知识分享

高一数学向量几何题已知△ABC的面积为S,已知AB·BC=2.(AB、BC为向量)若S=3/4|AB|,求|AC|的最小值.然后答案是(根号41)/2就是不知道过程呃。

题目详情
高一数学向量几何题
已知△ABC的面积为S,已知AB·BC=2.(AB、BC为向量)
若S=3/4|AB|,求|AC|的最小值.
然后答案是(根号41)/2
就是不知道过程呃。
▼优质解答
答案和解析
设:|AB|=c, |BC|=a, |AC|=b
AB·BC=2,.(AB、BC为向量)
而AB·BC=-BA·BC=-ca*cos∠ABC,所以
accos∠ABC=-2,a*cos∠ABC=-2/c ①
由于 S=(1/2)ca*sin∠ABC=3/4|AB|=(3/4)c,则
a*sin∠ABC=3/2 ②
由①和②得:a²=9/4+4/c²,根据余弦定理
|AC|²=b²=c²+a²-2ca*cos∠ABC=c²+9/4+4/c²+2*2=c²+4/c²+9/4+4
由均值定理得,c²+4/c²≥4,所以|AC|²=c²+4/c²+9/4+4≥41/4
故|AC|的最小值=√41/2
看了 高一数学向量几何题已知△AB...的网友还看了以下: