早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=2a+1/a-1/a2x,常数a>0.1.设m.n>0,证明:函数f(x)在[已知函数f(x)=2a+1/a-1/a2x,常数a>0.1.设m.n>0,证明:函数f(x)在[m,n]上单调递减2.设0

题目详情
已知函数f(x)=2a+1/a-1/a2x,常数a>0.1.设m.n>0,证明:函数f(x)在[
已知函数f(x)=2a+1/a-1/a2x,常数a>0.
1.设m.n>0,证明:函数f(x)在[m,n]上单调递减
2.设0
▼优质解答
答案和解析
(1)∵f(x)= (2a+1)/a-1/a²x =(-1/a²)/x+(2a+1)/a 且a>0
∴1/a²>0 ∴-1/a²<0
(这题类似反比例函数y=k/x,k≠0相当于k=-1/a²)
∵反比例函数y=(-1/a²)/x在[m,n]为增函数.(画出图像即可)
又f(x)的单调性与反比例函数y的单调性相同.
∴函数f(x)在[m,n]上单调递增.
(2)∵f(x)的定义域和值域都是[m,n],(0<m<n)
由(1)知,f(x)= (-1/a²)/x+(2a+1)/a ,(a>0)在区间[m,n]上为增函数.
∴f(x)min=f(m)=(-1/a²)/m+(2a+1)/a =m ,①
∴f(x)max=f(n)=(-1/a²)/n+(2a+1)/a =n,②
结合题意,又由①②知,对于方程(-1/a²)/x+(2a+1)/a = x有两个异正实根m,n.
即:方程x²-[(2a+1)/a )]x+1/a²= 0有两个异正实根m,n.
∴判别式Δ=[(2a+1)/a )]²-4•1•1/a²>0
即:[(2a+1)²-4]/a²>0 <=>(2a+1)²-4>0,∴(2a-1)•(2a+3)>0
∴a<-3/2 或a>1/2 ,又a>0 ∴a>1/2
由韦达定理得:m+n =(2a+1)/a =2+1/a>0 ③
m•n=1/a²>0 ④
显然③④对于a>1/2时成立.
∴a>1/2
∴a的取值范围为(1/2,+∞)