早教吧 育儿知识 作业答案 考试题库 百科 知识分享

双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右支上存在与右焦点的左准线等距离的点,求离心率e的取值范围.

题目详情
双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右支上存在与右焦点的左准线等距离的点,求离心率e的取值范围.
▼优质解答
答案和解析
右焦点F(c,0),左准线与x轴的交点B
c^2=a^2+b^2,c>0
设P(m,n),m>0,n>0,m、n满足m^2/a^2-n^2/b^2=1.1)
左准线方程x=-a^2/c,令Q(-a^2/c,p)
OP垂直平分FQ,O到F和Q的距离相等
即c^2=a^4/c^2+p^2.2)
设FQ中点A,则:XA=c-a^2/c=b^2/c,YA=p/2,即A(b^2/c,p/2)
OP所在直线方程:y=pcx/2b^2
由2)得:p=b√(c^2+a^2)/c
则有,y=√(c^2+a^2)x/2b.3)
该直线必与双曲线相交,且交点的横坐标和纵坐标均大于零
将3)代入1)式:
b^2x^2-a^2(2a^2+b^2)x^2/4b^2=a^2b^2
x=4a^2b^4/(4b^4-2a^4-a^2b^2)>0
即,4b^4-2a^4-a^2b^2>0
令b/a=t
则有,4t^4-2-t^2=(2t^2-1/4)^2-33/16>0
2t^2-1/4>√33/4或2t^2-1/4>-√33/4(舍去)
t^2>(1+√33)/8
即,-(1+√33)/8设渐近线y=(b/a)x的倾斜角θ,θ在(-π/2,π/2)内
t即tanθ
所以,arctan[-(1+√33)/8]<θ