早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在正方形ABCD中,点E,F分别是边AB,AD的中点,DE与CF相交于G,DE,CB的延长线相交于点H,点M是CG的中点求证:(1)BM‖GH;(2)BM⊥CF不要用中位线做,还木有教过,

题目详情
如图,在正方形ABCD中,点E,F分别是边AB,AD的中点,DE与CF相交于G,DE,CB的延长线相交于点H,点M是CG的中点

求证:(1)BM‖GH;(2)BM⊥CF
不要用中位线做,还木有教过,
▼优质解答
答案和解析
证明:(1)∵正方形ABCD,
∴∠A=∠EBH=90°,AD=BC,
∵E是AB的中点,
∴AE=BE,
∵∠AED=∠BEH,
∴△AED≌△BEH,
∴AD=BH,
∴BC=BH,即点B为CH的中点,
又点M为CG的中点,
∴BM为△CGH的中位线,
∴BM∥GH.
(2)∵四边形ABCD为正方形,
∴AB=AD=CD,∠A=∠ADC=90°,
又∵点E、F分别是边AB、AD的中点,
∴AE=1/2 AB,DF=1/2AD,
∴AE=DF,
∴△AED≌△DFC,
∴∠ADE=∠DCF,
∵∠ADE+∠CDE=90°,
∴∠DCF+∠CDE=90°,∴∠CGH=90°,
∵BM∥GH,
∴∠CMB=∠CGH=90°,
∴BM⊥CF.