早教吧作业答案频道 -->数学-->
如图,点E、F在正方形ABCD的边BC、CD上,AE、BF相交于点G,BE=CF,求证:(1)AE=BF,(2)AE⊥BF
题目详情
如图,点E、F在正方形ABCD的边BC、CD上,AE、BF相交于点G,BE=CF,求证:(1)AE=BF,(2)AE⊥BF
▼优质解答
答案和解析
在正方形ABCD中
AB=BC,∠ABC=∠C=90°
∵BE=CF
∴⊿ABE≌⊿BCF﹙SAS﹚
∴AE=BF
∠BAE=∠CBF
∵∠BAE+∠AEB=90°
∴∠CBF+∠AEB=90°
即∠BGE=90°
∴AE⊥BG
AB=BC,∠ABC=∠C=90°
∵BE=CF
∴⊿ABE≌⊿BCF﹙SAS﹚
∴AE=BF
∠BAE=∠CBF
∵∠BAE+∠AEB=90°
∴∠CBF+∠AEB=90°
即∠BGE=90°
∴AE⊥BG
看了 如图,点E、F在正方形ABC...的网友还看了以下:
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:AB与F作案;BD与A作案;CB与E 2020-05-16 …
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:某刑事案件的六个嫌疑分子A,B,C, 2020-05-16 …
设映射f:X->Y,A是X的子集,B也是X的子集,证明:(1)f(A并B)=f(A)并f(B)(2 2020-06-14 …
设f(x)是定义在(0,正无穷)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f( 2020-06-18 …
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:某刑事案件的六个嫌疑分子A,B,C, 2020-07-29 …
数学映射问题设映射f:X-Y,A属于X,B属于X,证明:(1)f(A并B)=f(A)并f(B)(2 2020-07-30 …
设f(x)在[a,b]上连续,在(a,b)内有二阶导数,连接点A(a,f(a)和B(b,f(b)) 2020-08-02 …
设f(x)在[a,b]上连续,在(a,b)内有二阶导数,连接点A(a,f(a)和B(b,f(b)) 2020-08-02 …
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a))与B(b,f(b)) 2020-08-02 …
设f(x)在[a,b]连续,在(a,b)二阶可导,连接点A(a,f(a))和B(b,f(b))的直线 2020-12-28 …