早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:在正方形ABCD中,点E在AB上且CE=AD+AE,F是AB的中点,求证:∩DCE=2∩BCF

题目详情
已知:在正方形ABCD中,点E在AB上且CE=AD+AE,F是AB的中点,求证:∩DCE=2∩BCF
▼优质解答
答案和解析
证明:延长CD到点P,使DP=AE;连接EP,交AD于Q
ABCD为正方形,所以∠PDQ=∠EAQ=90
∠PQD=∠AQE
DP=AE
所以△PDQ≌△EAQ,AQ=DQ
AD=CD,AE=DP
CE=AD+AE,CP=CD+DP
所以CE=CP,△CEP为等腰三角形
CQ为底边EP中线,因此也是顶角∠ECP平分线
所以∠DCE=2∠DCQ
在△DCQ和△BCF中,
DC=BC,∠D=∠CBF=90,DQ=BF
所以△DCQ≌△BCF,∠BCF=∠DCQ
因此∠DCE=2∠BCF