早教吧作业答案频道 -->数学-->
在平面直角坐标系中,已知抛物线经过点A(0,4)B(1,0)C(5,0)抛物线对称轴与X轴交于M.(1)求抛物线解析式(2)设点P为抛物线(X>5)上一点,若以A,O,M,P为顶点的四边形的长度为四个连续正整数,
题目详情
在平面直角坐标系中,已知抛物线经过点A(0,4)B(1,0)C(5,0)抛物线对称轴与X轴交于M.(1)求抛物线解析式
(2)设点P为抛物线(X>5)上一点,若以A,O,M,P为顶点的四边形的长度为四个连续正整数,请你直接写出点P坐标.
(3)连接AC,探索AC下方抛物线是否有一点N,使△NAC面积最大?若存在,请你求出N点坐标,若不存在,请说明理由.
(2)设点P为抛物线(X>5)上一点,若以A,O,M,P为顶点的四边形的长度为四个连续正整数,请你直接写出点P坐标.
(3)连接AC,探索AC下方抛物线是否有一点N,使△NAC面积最大?若存在,请你求出N点坐标,若不存在,请说明理由.
▼优质解答
答案和解析
(1)根据已知条件可设抛物线的解析式为y=a(x-1)(x-5),
把点A(0,4)代入上式得:a=45,
∴y=45(x-1)(x-5)=45x2-245x+4=45(x-3)2-165,
∴抛物线的对称轴是:x=3;
(2)P点坐标为:(6,4),
由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,
又∵点P的坐标中x>5,
∴MP>2,AP>2;
∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,
∴四条边的长只能是3、4、5、6的一种情况,
在Rt△AOM中,AM=OA2+OM2=42+32=5,
∵抛物线对称轴过点M,
∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,
即PM=5,此时点P横坐标为6,即AP=6;
故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立,
即P(6,4);
(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.
设N点的横坐标为t,此时点N(t,45t2-245t+4)(0<t<5),
过点N作NG∥y轴交AC于G;作AM⊥NG于M,
由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=-45x+4;
把x=t代入得:y=-45x+4,则G(t,-45t+4),
此时:NG=-45x+4-(45t2-245t+4)=-45t2+4t,
∵AM+CF=CO,
∴S△ACN=S△ANG+S△CGN=12AM×NG+12NG×CF=12NG•OC=12(-45t2+4t)×5=-2t2+10t=-2(t-52)2+252,
∴当t=52时,△CAN面积的最大值为252,
由t=52,得:y=45t2-245t+4=-3,
∴N(52,-3).
把点A(0,4)代入上式得:a=45,
∴y=45(x-1)(x-5)=45x2-245x+4=45(x-3)2-165,
∴抛物线的对称轴是:x=3;
(2)P点坐标为:(6,4),
由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,
又∵点P的坐标中x>5,
∴MP>2,AP>2;
∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,
∴四条边的长只能是3、4、5、6的一种情况,
在Rt△AOM中,AM=OA2+OM2=42+32=5,
∵抛物线对称轴过点M,
∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,
即PM=5,此时点P横坐标为6,即AP=6;
故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立,
即P(6,4);
(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.
设N点的横坐标为t,此时点N(t,45t2-245t+4)(0<t<5),
过点N作NG∥y轴交AC于G;作AM⊥NG于M,
由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=-45x+4;
把x=t代入得:y=-45x+4,则G(t,-45t+4),
此时:NG=-45x+4-(45t2-245t+4)=-45t2+4t,
∵AM+CF=CO,
∴S△ACN=S△ANG+S△CGN=12AM×NG+12NG×CF=12NG•OC=12(-45t2+4t)×5=-2t2+10t=-2(t-52)2+252,
∴当t=52时,△CAN面积的最大值为252,
由t=52,得:y=45t2-245t+4=-3,
∴N(52,-3).
看了 在平面直角坐标系中,已知抛物...的网友还看了以下:
声波对人体有无危害我住欧洲一个阁楼上面 因为是顶楼 周围全是各种天线 每天晚上夜深人静的时候 就有 2020-05-17 …
因为不知道怎么发图,就拿直角尺做图吧.直角的顶点为C30°的角为顶点为B60°为A斜边的高的垂足为 2020-05-17 …
什么叫做交轨法?一个等腰直角三角形ABM的腰长为a,角A为直角,顶点A,B各在x轴和y轴上移动,如 2020-05-20 …
如图,2条直线相交所组成的角中,互为对顶角的角有2对:∠AOD和∠COB,∠AOC和∠BOD.(1 2020-06-15 …
某直齿圆柱齿轮转动的小齿轮已丢失,但已知与之相配的大齿轮为标准齿轮,其齿数为52,齿顶圆直径为13 2020-06-22 …
齿顶圆直径公式理解d1=(z1+2ha*)m要我理解的话,齿顶圆直径=分度圆直径+齿顶高,那么分度 2020-06-29 …
已知椭圆的左、右焦点分别为,离心率,A为右顶点,K为右准线与X轴的交点,且.(I)求椭圆的标准方程 2020-07-21 …
为什么开区间说连续不一定是一直连续而闭区间就可以说连续就会一直连续呢 2020-08-01 …
直线AB和直线CD相交于O,角AoC与角bod互为对顶角,mn分别平分这两个对顶角,问为什么角mo 2020-08-01 …
节距400,滚子直径50,齿数分别是6、8、10、12的链轮,求分度圆直径,齿顶圆直径分别是多少?分 2020-11-26 …