早教吧作业答案频道 -->其他-->
在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC. (Ⅰ)求证:PA⊥平面PBC;...在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.(Ⅰ)求证:PA⊥平面PBC;(Ⅱ)求二面
题目详情
在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC. (Ⅰ)求证:PA⊥平面PBC;...
在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;(麻烦写具体步骤谢了)
在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;(麻烦写具体步骤谢了)
▼优质解答
答案和解析
分析:(1)证明PA⊥平面PBC,只需证明PA⊥BC,PA⊥PB,利用平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,可得BC⊥平面PAB,结论可证;
(2)作PO⊥AB于点O,OM⊥AC于点M,连接PM,可证∠PMO是二面角P-AC-B的平面角,从而可求二面角P-AC--B的一个三角函数值.
(1)证明:
∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,
∴BC⊥平面PAB,
∵PA⊂平面PAB,
∴PA⊥BC;
又∵PA⊥PB,PB∩BC=B
∴PA⊥平面PBC
作PO⊥AB于点O,OM⊥AC于点M,连接PM,
∵平面PAB⊥平面ABC,
∴PO⊥平面ABC,由三垂线定理得PM⊥AC,
∴∠PMO是二面角P-AC-B的平面角.
设PA=PB=根号6,
∵PA⊥PB,
∴AB=2根号3PO=BO=AO=根号3
∵OM⊥AM,∠MAO=30°,
∴OM=AOsin30°=AO/2
∴tan∠PMO=PO/OM=AO/OM=2
(2)作PO⊥AB于点O,OM⊥AC于点M,连接PM,可证∠PMO是二面角P-AC-B的平面角,从而可求二面角P-AC--B的一个三角函数值.
(1)证明:
∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,
∴BC⊥平面PAB,
∵PA⊂平面PAB,
∴PA⊥BC;
又∵PA⊥PB,PB∩BC=B
∴PA⊥平面PBC
作PO⊥AB于点O,OM⊥AC于点M,连接PM,
∵平面PAB⊥平面ABC,
∴PO⊥平面ABC,由三垂线定理得PM⊥AC,
∴∠PMO是二面角P-AC-B的平面角.
设PA=PB=根号6,
∵PA⊥PB,
∴AB=2根号3PO=BO=AO=根号3
∵OM⊥AM,∠MAO=30°,
∴OM=AOsin30°=AO/2
∴tan∠PMO=PO/OM=AO/OM=2
看了 在三棱锥P-ABC中,PA=...的网友还看了以下:
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
已知k为自然数,且a(k)=(2^k)/(3^(2^k)+1) {a(k)中的括号是下标的意思}A 2020-05-16 …
a-a+1/a=a*a+1/a其中的奥妙是什么?a+1/a是一个数!a-(a+1/a)=a*(a+ 2020-05-16 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)=(a-1)[(a+1)(a^ 2020-05-22 …
急啊!~A∩A=?A∩ø=?A∩B=?B∩A=?A∪A=?A∪ø=?拜托各位了3QA∩A=A∩=A 2020-06-12 …
A∩A=?A∩ø=?A∩B=?B∩A=?A∪A=?A∪ø=?A∪B=?B∪A=?A∩A=A∩ø=A 2020-06-12 …
已知a/(a^2+1)=1/2,求a^2/(a^4+1)的值由a/(a^2+1)=1/2,知a≠0 2020-06-14 …
第一题令A={a,b,c,d,e},B={a,b,c,d,e,f,g,h}.求a)A∪Bb)A∩B 2020-06-17 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …