早教吧作业答案频道 -->数学-->
若以A(根号3,0)为顶点的抛物线y=ax²+bx+c与直线y=kx+m有两个公共点B(0,-1),C(3根号3,-4)(1)求直线BC和抛物线所对应的函数解析式;(2)若过点B的另一直线l与抛物线的另一个交点为D且∠BAD=90
题目详情
若以A(根号3,0)为顶点的抛物线y=ax²+bx+c与直线y=kx+m有两个公共点B(0,-1),C(3根号3,-4)
(1)求直线BC和抛物线所对应的函数解析式;
(2)若过点B的另一直线l与抛物线的另一个交点为D且∠BAD=90°,求直线l所对应的函数解析式;
(3)若等边三角形PQR三个顶点中有两点在直线BC上同时也有两点在抛物线上,设点△PQR三个顶点中纵坐标最大的点,求点P的坐标.
希望今天能解决!
(1)求直线BC和抛物线所对应的函数解析式;
(2)若过点B的另一直线l与抛物线的另一个交点为D且∠BAD=90°,求直线l所对应的函数解析式;
(3)若等边三角形PQR三个顶点中有两点在直线BC上同时也有两点在抛物线上,设点△PQR三个顶点中纵坐标最大的点,求点P的坐标.
希望今天能解决!
▼优质解答
答案和解析
(1)
A(√3,0)为顶点,y = a(x - √3)²
过点B(0,-1):-1 = 3a,a = -1/3
y = -(x - √3)²/3
直线过点B:m = -1
直线过点C(3√3,-4):-4 = 3√3k - 1,k = -1/√3
y = -x/√3 - 1
(2)
AB斜率为k = (-1 - 0)/(0 - √3) = 1/√3
AD斜率为 -1/k = -√3
AD解析式:y - 0 = -√3(x - √3),y = 3 -√3x
(3)
要使三个顶点中有两点在直线BC上同时也有两点在抛物线上,则B,C中有一点为一个顶点.
如C为此顶点,P纵坐标不可能最大(三角形PQR在BC左下方),所以B肯定是一个顶点.
tan∠ABO = OA/OB = √3,∠ABO = 60°
AD斜率为-1/√3,倾斜角为150°,易知∠ABC = (90° - 60°) + (180° - 150°) = 60°
此时纵坐标最大的顶点与A重合,P(√3,0)
A(√3,0)为顶点,y = a(x - √3)²
过点B(0,-1):-1 = 3a,a = -1/3
y = -(x - √3)²/3
直线过点B:m = -1
直线过点C(3√3,-4):-4 = 3√3k - 1,k = -1/√3
y = -x/√3 - 1
(2)
AB斜率为k = (-1 - 0)/(0 - √3) = 1/√3
AD斜率为 -1/k = -√3
AD解析式:y - 0 = -√3(x - √3),y = 3 -√3x
(3)
要使三个顶点中有两点在直线BC上同时也有两点在抛物线上,则B,C中有一点为一个顶点.
如C为此顶点,P纵坐标不可能最大(三角形PQR在BC左下方),所以B肯定是一个顶点.
tan∠ABO = OA/OB = √3,∠ABO = 60°
AD斜率为-1/√3,倾斜角为150°,易知∠ABC = (90° - 60°) + (180° - 150°) = 60°
此时纵坐标最大的顶点与A重合,P(√3,0)
看了 若以A(根号3,0)为顶点的...的网友还看了以下:
下列关于赤道的叙述正确的是①赤道是划分经度的起点线,是0°经线②赤道是划分纬度的起点线,是90°纬 2020-04-24 …
急!已知曲线C上的动点P到点F(2,0)的距离比到直线X=-1距离大1(1),求曲线C的方程(2) 2020-05-14 …
在梯形ABCD中,AD‖BC,∠A=90°,AB=7,AD=2,BC=3,问“在线段AB上是否存在 2020-05-16 …
已知F1 F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双 2020-05-16 …
在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E, 2020-05-24 …
当倾斜角a≠90°,直线L的斜率k=,过点M1(x1,y1),M2(x2,y2)(x1≠x2)的直 2020-06-12 …
如图,在四边形纸片ABCD中,AB平行DC,∠A=90°,CD>AD,把纸片沿过点D的直线折叠,使 2020-07-09 …
在abc中,∠a=90°,ab=ac,d是斜边上bc的中点,e'.f分别在线段ab.ac上,且∠e 2020-07-14 …
如图,在三角形ABC中∠ABC的平分线和三角形ABC的外角平分线交于点D,∠A=90°,求∠D=? 2020-08-03 …
通过“30m”折返跑”的测试成绩可以反应一个人的身体素质.在平直的跑道上,一学生站立在起点线A处,当 2020-11-04 …