早教吧作业答案频道 -->数学-->
抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△AOB的面积为3,求a,b,k
题目详情
抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△AOB的面积为3,求a,b,k
▼优质解答
答案和解析
把A(1,4)代入y=k/x
得k=4
设B(m,4/m),m<0,直线AB解析式为y=kx+b,AB与x轴交点为C
把A(1,4)、B(m,4/m)代入y=kx+b得
4=k+b .①
4/m=km+b.②
由①②解得
k= -4/m
b= 4(m+1)/m
∴AB解析式为 y=[-4/m]·x + 4(m+1)/m
当y=0时,x=m+1
即C点坐标为(m+1,0),可以看出C在原点左边,即m+1<0
∴OC=|m+1|=-(m+1)
S△AOC=OC·4÷2=-2(m+1)
S△BOC=OC·|4/m|÷2= -(m+1)·|2/m|=2(m+1)/m (因为m<0,绝对值去掉要变号)
∴S△AOB=S△AOC+S△BOC=2(m+1)/m - 2(m+1) = 3
解得m=-2或1/2(舍)
∴4/m=-2
∴B(-2,-2)
把A(1,4)、B(-2,-2)代入y=ax²+bx
得
4=a+4
-2=4a-2b
解得a=1,b=3
得k=4
设B(m,4/m),m<0,直线AB解析式为y=kx+b,AB与x轴交点为C
把A(1,4)、B(m,4/m)代入y=kx+b得
4=k+b .①
4/m=km+b.②
由①②解得
k= -4/m
b= 4(m+1)/m
∴AB解析式为 y=[-4/m]·x + 4(m+1)/m
当y=0时,x=m+1
即C点坐标为(m+1,0),可以看出C在原点左边,即m+1<0
∴OC=|m+1|=-(m+1)
S△AOC=OC·4÷2=-2(m+1)
S△BOC=OC·|4/m|÷2= -(m+1)·|2/m|=2(m+1)/m (因为m<0,绝对值去掉要变号)
∴S△AOB=S△AOC+S△BOC=2(m+1)/m - 2(m+1) = 3
解得m=-2或1/2(舍)
∴4/m=-2
∴B(-2,-2)
把A(1,4)、B(-2,-2)代入y=ax²+bx
得
4=a+4
-2=4a-2b
解得a=1,b=3
看了 抛物线y=ax^2+bx(a...的网友还看了以下:
如图 已知 直线l∶y=-√3x÷3+√3交x轴于点A 交y轴于点B 将△AOB沿直线l翻折 点如 2020-05-16 …
已知一次函数y=(k+3)x+|k-1|根据下列条件求出k的值(1)其图像与直线y=2x平行2)其 2020-06-03 …
已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.已知:y关于x的函数y= 2020-06-12 …
知道Y和R,求XR是半径可以用asin和acos一个圆,R是半径,圆上的某一点已知Y坐标,求这点对 2020-06-14 …
聪明人解答:已知抛物线y=x平方-2(k-1)x+k平方-7与x轴有两个不同的交点已知抛物线y=x 2020-06-14 …
1.已知Y与X成反比例,且当X=-1时,Y=2,写出Y与X的函数关系式 2.反比例函数Y=3X分之 2020-06-27 …
已知直线y=2x+3,y=-2x-5,y=kx-7/2都经过同一点.(1)求k的值;(2)求经过( 2020-06-28 …
已知双曲线y=k/x与直线y=1/4x相交于A,B两点.第一象限上的点M(m,n)(在A点左侧)是 2020-07-26 …
已知y=a√x(a>0)与曲线y=ln√x在点(x0,y0)处有公共切线,(1.)求a的值及切点已 2020-07-31 …
已知一次函数y=(1-3k)x+2k+1(k是常数)1.k为何值时,y随x的增大而减小2.k为何值 2020-08-02 …