早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数f(x)=2x-ex+1.(1)求f(x)的最大值;(2)已知x∈(0,1),af(x)<tanx,求a的取值范围.

题目详情
函数f(x)=2x-ex+1.
(1)求f(x)的最大值;
(2)已知x∈(0,1),af(x)<tanx,求a的取值范围.
▼优质解答
答案和解析
(1)f(x)=2x-ex+1,f′(x)=2-ex
令f′(x)>0,解得:xln2,
∴f(x)在(-∞,ln2)递增,在(ln2,+∞)递减,
∴f(x)的最大值是f(ln2)=2ln2-1;
(2)x∈(0,1)时,f(x)在(0,ln2)递增,在(ln2,1)递减,
且f(0)=0,f(1)=3-e>0,∴f(x)>0,
∵tanx>0,∴a≤0时,af(x)≤0a>0时,令g(x)=tanx-af(x),
则g′(x)=
1
cos2x
+a(ex-2),
∴g(x)在(0,1)递增且g′(0)=1-a,
①0<a≤1时,g′(0)≥0,g′(x)≥0,
∴g(x)在(0,1)递增,又g(0)=0,
∴此时g(x)>0,即af(x)<tanx成立,
②a>1时,g′(0)<0,g′(1)>0,
∴∃x0∈(0,1),使得g′(x0)=0,
即x∈(0,x0)时,g′(x)<0,g(x)递减,
又g(0)=0,
∴g(x)<0与af(x)<tanx矛盾,
综上:a≤1.